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Preface 

The objectives of this book are threefold: first, to identify the determinants of 

innovation at the economy-wide level; second, to ascertain whether they are the same across 

different economies; and third, to find suitable metrics for comparing the relative success in 

innovation across different economies.  In other words, we try to discover whether there is a 

common law of innovation that applies across different economies.  We also try to develop 

indicators of relative success in innovation across different economies. 

An important innovation input is Research and Development (R&D).  While 

discoveries and inventions are brought about by R&D activities, they are not brought about by 

only R&D activities in the current period.  They can result from R&D activities initiated a long 

time ago.  We therefore measure the innovation input of an economy by the quantity of its real 

R&D capital stock, defined as the cumulative past real expenditures on R&D, less a 

depreciation of 10 percent per annum.  Important innovation outputs are patent applications 

submitted to and patent grants awarded by different official patent authorities, such as the U.S. 

Patent and Trademark Office (USPTO), the European Patent Office (EPO) and the China 

National Intellectual Property Administration (CNIPA), and other domestic patent authorities.  

We try to establish systematically the positive relationship between innovation outputs and 

innovation input of different economies. 

The economies included in our study consists of the Group-of-Seven (G7) countries 

(Canada, France, Germany, Italy, Japan, the United Kingdom and the United States), the four 

East Asian Newly Industrialised Economies (EANIEs) (Hong Kong, South Korea, Singapore 

and Taiwan), and the Mainland of China. 

We wish to express our deepest gratitude to Professor XU Guanhua, who served as 

Minister of Science and Technology of the People’s Republic of China from 2001 to 2007, for 

writing a Preface for our book.  We are most grateful to Mrs. Ayesha Macpherson LAU and 

Prof. Jungsoo PARK for their helpful comments and suggestions on earlier drafts.  The authors 

also wish to thank Dr. Paul AIELLO, Prof. Michael J. BOSKIN, Prof. Cyrus CHU, Prof. Dale 

W. JORGENSON, Prof. Lang KAO, Prof. Chung-Ming KUAN, Prof. Masahiro KURODA, 

Prof. Jiadong SHEA, Mr. Kenny SHUI, Mr. Junjie TANG, and the late Prof. John WONG of 

the National University of Singapore for their advice and assistance.  We also wish to thank 

the Lau Chor Tak Institute of Global Economics and Finance of The Chinese University of 

Hong Kong for its financial support of this research project.  Finally, Ms. Nicole ONG and her 

colleagues at the World Scientific Publishing Company deserve our special thanks for their 
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Chapter 8: Indicators of Relative Success in Innovation across Economies 

In previous chapters, we have compared the economies included in our study in terms 

of their numbers of domestic, USPTO, EPO and CNIPA patent applications and/or grants.  In 

this chapter, we develop several indicators of relative success in innovation based on their 

numbers of patent applications and grants and use them to assess the relative performance of 

the economies in innovation. 

 

In Table 8-1, we tabulate the numbers of domestic, USPTO, EPO and CNIPA patent 

grants received by the residents of the different economies in 2019.  From the tabulation, we 

also derive the relative rankings of each economy in accordance with the number of patent 

grants under each category.  In 2019, Mainland China had the largest number of domestic 

patent grants in 2019, followed by the U.S. and Japan, with South Korea in fourth place.  The 

U.S. had the largest number of USPTO and EPO patent grants, but only the third largest number 

of CNIPA patent grants, after Japan.  Japan demonstrated its formidable strength in innovation 

by becoming the second highest recipient of respectively the USPTO, EPO and CNIPA patent 

grants.  Germany was the strongest European country in innovation, ranking first among 

European countries in all three categories of patent grants—USPTO, EPO and CNIPA.  (It was 

third in EPO patent grants, fourth in CNIPA patent grants, and fifth in USPTO patent grants.)  

South Korea, also an up-and-coming powerhouse in innovation, came in third in USPTO patent 

grants, ahead of both Mainland China and Germany, and fifth in both EPO and CNIPA grants.  

Singapore and Hong Kong were in the last places.3 

                                                 
3 Hong Kong, however, was ahead of Canada in CNIPA patent grants in 2019 (592 vs 568). 
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Table 8-1: The Numbers of Domestic, USPTO, EPO and CNIPA Patent Grants 

Received by the Residents of the Different Economies and Their Relative Ranks in 2019 

 

Sources: Data on the number of domestic and U.S. patent grants are from Table A4-2 and TableA5-2, respectively.  

Data on EPO patent grants were collected from the European Patent Office website.  Data on CNIPA patent grants 

were collected from China Statistical Yearbook, various issues. 

 

Looking simply at the aggregate total number of patent grants received by each 

economy from all three major patent offices—CNIPA, EPO and USPTO—in 2019, Mainland 

China would come in first, with 379,549 patent grants, followed by the U.S. (224,843) and 

Japan (106,366).  However, this result is, in part, the artifact of the overwhelmingly large total 

number of CNIPA patent grants (452,804), the bulk of which (354,111) were awarded to 

Chinese applicants, even though as a group they had the lowest CNIPA grant rate.  Instead, we 

compute a weighted rank for the twelve economies, using their ranks in each of the categories 

of USPTO, EPO and CNIPA patent grants in Table 8-1.  The weights are the total numbers of 

patent grants of USPTO (354,430), EPO (137,784) and CNIPA (452,804) respectively in 2019, 

divided by the aggregate total number of patent grants of all three patent offices (945,018).  

The results, presented in the “Weighted Rank” column, indicate that the U.S. would still be 

number one by a hair, followed by Japan, with Mainland China in third place.  Germany was 

ranked fourth, followed by South Korea and Taiwan, China.  Four of the top ten patent-

generating economies were in East Asia, four were in Europe, and two were in North America.4  

The weighted ranks have been converted into whole integer ranks in the last column of Table 

8-1. 

 

The rank correlation coefficient between the integerised weighted ranks and the USPTO 

ranks is a high 0.937, which means that the USPTO rank order is a good summary indicator of 

the relative success in innovation across economies.  We have also previously established, in 

                                                 
4 Israel is one of the innovative economies that has not been included in this study. 

Number Rank Number Rank Number Rank Number Rank

Canada 2,035 10 7,595 8 1,683 9 568 11 9.58 10

France 11,673 7 7,233 9 8,800 4 2,997 7 7.31 7

Germany 11,770 6 18,293 5 21,198 3 9,989 4 4.23 4

Italy 2,130 9 3,175 10 3,713 8 1,102 9 9.23 9

Japan 140,865 3 53,542 2 22,423 2 30,401 2 2.00 2

United Kingdom 3,081 8 7,791 7 4,119 7 1,310 8 7.48 8

United States 167,115 2 167,115 1 34,614 1 23,114 3 1.96 1

Mainland, China 354,111 1 19,209 4 6,229 6 354,111 1 2.85 3

Hong Kong, China 107 12 846 12 50 12 592 10 11.04 11

South Korea 94,852 4 21,684 3 7,247 5 9,437 5 4.25 5

Singapore 264 11 1,119 11 440 11 566 12 11.48 12

Taiwan, China 14,481 5 11,489 6 1,014 10 6,197 6 6.58 6

Domestic Patent Grants USPTO Patent Grants EPO Patent Grants CNIPA Patent Grants Weighted

Rank

Weighted

Rank

Integerise
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Chapter 5 above, that the procedures and standards employed by the USPTO do not appear to 

be biased in favour of either U.S. applicants or any of the foreign applicants.  Of course, 

counting only the number of USPTO patent grants does penalise economies with a low USPTO 

patent application rate, such as Mainland China.  But we expect that both the Chinese USPTO 

patent application rate and the CNIPA patent application rates of the U.S. and other economies 

will increase over time, since no enterprise in the world, whatever its geographical or national 

origin, can afford to ignore the huge markets of China and the U.S. in the long run. 

 

In Chart 8-1, we compare the numbers of USPTO patent grants received by each 

economy each year, using the number of patent grants received by U.S. residents as a 

benchmark (100).  Chart 8-1 shows that the U.S. has been the leader in USPTO patent grants 

from the very beginning.  Since the mid-1970s, Japan has been a persistent number two behind 

the U.S., followed more recently by South Korea, which overtook Germany in the mid-2010s.  

However, China also managed to overtake Germany in 2019 to become the economy with the 

fourth highest number of USPTO patent grants.  The U.S. lead in USPTO patent grants has 

been commanding, accounting for almost 50 percent of all USPTO patent grants.  The second-

placed Japan received no more than a third of the number of patent grants received by the U.S., 

and South Korea, China, and Germany each received approximately one-tenth of the number 

received by the U.S.  With this as a performance indicator of innovation, the rank order is the 

U.S., Japan, South Korea, China, and Germany. 
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Chart 8-1: An Index of USPTO Patent Grants 

(The Number of Patent Grants Received by U.S. Residents=100) 

 

Source: Data on the number of U.S. patent grants are from Table A5-2. 

 

A second possible indicator is the relative efficiency of the real R&D capital stock 

across economies.  If the efficiency is the same between two economies, then the numbers of 

patent grants received per unit quantity of the real R&D capital stock should be identical.  To 

the extent that they differ, they may reflect differences in R&D efficiency.  In Chart 8-2, we 

compare the R&D efficiency in terms of the number of domestic patent grants per billion 2019 

U.S. dollars of R&D capital stock, across the economies included in our study.  China has had 

the highest R&D efficiency in the generation of domestic patent grants since 2015, despite a 

very low domestic patent grant rate (see Chart 7-5), followed by South Korea and Taiwan, 

China.  Japan was the leader in R&D efficiency in domestic patent grants between 1969 and 

1996, but lost out to first South Korea, then Taiwan, China and then Mainland China, ending 

up in fourth place in 2019.  The U.S. had the highest efficiency among the G-7 countries except 

Japan.  With this as a performance indicator of innovation, the rank order is Mainland China, 

South Korea, Taiwan, China, Japan, and the U.S.  We should add that the quantity of R&D 

capital stock in 2019 U.S. dollars of an economy is sensitive to the value of the exchange rate 

of its currency relative to the U.S. dollar in 2019.  A low value of its exchange rate would result 
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in a lower quantity of its real R&D capital stock, and hence a higher R&D efficiency in the 

generation of domestic patent grants, and vice versa. 

 

Chart 8-2: The Number of Domestic Patent Grants per Unit Quantity 

of the Real R&D Capital Stock in billion 2019 US$ 

 

Sources: Data on the number of domestic patent applications are from Table A4-2 and data on the quantity of real 

R&D capital stock are from Table A3-2. 

 

In Chart 8-3, we compare the R&D efficiency in terms of the number of USPTO patent 

grants per billion 2019 US$ of R&D capital stock, across the economies in our study.  It turns 

out that Taiwan, China had the highest R&D efficiency, with the largest number of USPTO 

patent grants per unit quantity of its real R&D capital stock.  South Korea was in second place, 

followed by Hong Kong, China, Japan, and the U.S.  The U.S. has had the highest R&D 

efficiency in the generation of USPTO patent grants among all G-7 countries except Japan 

since 1965.  China has had the lowest R&D efficiency in the generation of USPTO patent 

grants, but this may also have to do with its low U.S. patent application rate.  In any case, 

Chinese R&D efficiency in the generation of USPTO patent grants has been rising steadily 

since 2000.  With this as a performance indicator of innovation, the rank order is Taiwan, China, 

South Korea, Hong Kong, China, Japan, and the U.S.  Similar to the case for R&D efficiency 

in the generation of domestic patent grants, the relative efficiency in the generation of USPTO 

patent grants is also sensitive to the values of exchange rates in 2019.  A low value of the 
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exchange rate would result in a lower quantity of the real R&D capital stock in U.S. dollars, 

and hence a higher R&D efficiency in the generation of USPTO patent grants, and vice versa. 

 

Chart 8-3: The Number of USPTO Patent Grants per Unit Quantity 

of the Real R&D Capital Stock in billion 2019 US$ 

 

Sources: Data on the number of USPTO patent applications are from Table A5-2 and data on the quantity of real 

R&D capital stock are from Table A3-2. 

 

A third possible indicator is based on scatter diagram of the number of USPTO patents 

and the quantity of real R&D capital stock presented as Chart 5-14 and reproduced below.  

There is an overall linear regression line estimated from the data, which can be used to predict 

the number of USPTO patents that an economy with a given quantity of real R&D capital stock 

would be expected to be able to generate under normal circumstances.  The vertical distance of 

each economy’s data point from the linear regression line (the residual of the regression) is 

then a measure of its degree of under- or over-achievement.  If an economy operates below the 

overall linear regression line, it is an “under-achiever”; if it operates above the line, it is an 

“over-achiever”.  For every economy and in every year between 2000 and 2019, we compute 

the additional percentage (positive or negative) of USPTO patent grants that the economy 

would have been awarded, given its quantity of real R&D capital stock, if it had operated on 

the linear regression line. 
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Chart 5-14: The Number of USPTO Patent Grants 

and the Quantity of Real R&D Capital Stock, G-7 Countries, Mainland China, and 4 EANIEs 

 

Sources: Table A5-2 of the Appendix in Chapter 5 and Table A3-2 of the Appendix in Chapter 3. 

 

The results of this exercise are presented in Chart 8-4.  These results are both 

retrospective and prospective.  Taiwan, China had the highest degree of “over-achievement”, 

followed by Hong Kong, China, South Korea, Canada, Japan, and Singapore.  The U.S. has 

been an “over-achiever” since 2010.  However, all the European economies in our study—

France, Italy, the U.K., and Germany--have been habitual “under-achievers”.  So has been 

Mainland China.  However, the Chinese degree of “under-achievement” has greatly improved 

over time, increasing from -1,291 percent in 2000 to -73 percent in 2019.  The “under-achievers” 

such as China, and France and Italy (both with “under-achievement” somewhere between 30 

and 40 percent) have a great deal of room for further improvement.  With this as a performance 

indicator of innovation, the rank order is Taiwan, China, Hong Kong, China, South Korea, 

Canada, and Japan.  We should add that the degree of over- and/or under-achievement can also 

be sensitive to the values of the exchange rates in 2019.  In the first place, the overall linear 

regression line itself will be affected by the changes in the quantities of R&D capital stocks in 

2019 US$.  Moreover, if the exchange rate was under-valued, the quantity of R&D capital stock 

in 2019 U.S. dollars would also be under-estimated, and this might result in an “apparent” over-
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achievement (the same number of patent grants with a lower quantity of real R&D capital 

stock), and vice versa. 

 

Chart 8-4: The Percentage of Over- and Under-Achievement in USPTO Patent Grants, 

G-7 Countries, Mainland China, and 4 EANIEs (2000-2019) 

 

Source: Data are taken from Table A8-1 of the Appendix to this Chapter. 

Note: The graph is truncated at -600 percent in order to maintain legibility of the rest of the graph.  In 2000, the 

under-achievement of Mainland China in USPTO patent grants was -1,291 percent. 
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Appendix 

Estimation of the Degree of Over- and Under-Achievement in USPTO Patent Grants 

 

The first step in the estimation of the degree of over- and/or under-achievement is to 

predict what the number of USPTO patent grants would have been for each economy, based 

on its quantity of real R&D capital stock of that year, if the economy were operating on the 

overall linear regression line.  Once the predicted number of USPTO patent grants is derived, 

it can be subtracted from the actual number of USPTO patent grants and then divided by the 

actual number of USPTO patent grants to arrive at a percentage over- or under-achievement.  

This is done for each economy for every year from 2000 to 2019.  The results of these 

calculations are presented in Table A8-1 below. 
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Table A8-1: Estimated Percentage Over- and Under-Achievements in USPTO Patent Grants, 

G-7 Countries, Mainland China, and 4 EANIEs (2000-2019) 

 

Source: Authors’ calculations. 

  

Canada France Germany Italy Japan
United

Kingdom

United

States

Mainland,

China

Hong

Kong,

China

South

Korea
Singapore

Taiwan,

China

2000 32.2 -72.0 -4.0 -50.2 38.0 -42.0 27.3 -1,290.6 75.3 57.7 37.7 91.0

2001 31.4 -66.8 2.1 -54.7 39.3 -33.7 25.9 -876.4 79.1 56.4 46.6 91.3

2002 22.5 -71.9 -1.0 -55.8 40.0 -40.6 21.9 -659.0 75.5 54.9 55.6 90.6

2003 17.5 -84.5 -2.6 -63.7 39.1 -51.8 19.8 -767.0 76.4 52.5 51.7 89.4

2004 11.4 -116.1 -12.0 -82.7 36.7 -62.7 13.3 -651.9 75.8 53.7 48.9 89.6

2005 -9.2 -160.6 -37.2 -128.6 23.9 -81.1 -1.2 -794.2 69.0 48.1 25.6 86.7

2006 7.0 -121.9 -26.4 -104.5 34.9 -62.1 13.0 -550.0 66.8 58.0 29.9 88.3

2007 -4.7 -148.2 -43.4 -138.6 25.4 -80.4 -2.0 -566.3 65.1 56.3 18.1 86.5

2008 -6.5 -150.4 -49.5 -136.0 23.2 -97.6 -8.8 -399.5 57.4 59.5 8.5 85.7

2009 -2.0 -157.3 -53.0 -145.0 24.8 -96.6 -6.7 -338.6 52.4 61.4 4.7 84.9

2010 20.9 -85.8 -14.4 -88.0 39.4 -47.9 15.7 -230.9 63.2 68.1 26.2 86.7

2011 21.8 -86.3 -22.2 -83.7 40.2 -50.8 13.8 -231.8 59.3 66.4 26.6 86.4

2012 30.6 -60.3 -9.0 -66.7 44.5 -26.4 20.3 -169.8 65.8 65.3 36.7 87.7

2013 37.6 -45.1 -0.7 -44.4 45.0 -14.9 25.9 -150.4 64.2 64.9 31.7 87.2

2014 41.1 -34.7 2.9 -40.0 45.8 -4.5 29.8 -141.3 66.2 65.8 38.9 86.5

2015 37.9 -40.4 -0.1 -42.1 43.0 -7.8 26.0 -147.8 63.9 65.4 35.8 86.0

2016 34.4 -46.4 -7.2 -43.7 39.0 -9.4 25.4 -121.8 65.1 65.6 31.9 84.9

2017 37.0 -40.4 -4.6 -44.1 38.1 -8.9 26.9 -99.3 65.6 65.2 29.2 84.0

2018 32.0 -50.5 -13.9 -42.9 34.4 -11.8 21.2 -105.3 62.9 60.6 25.3 81.9

2019 41.2 -36.9 -3.5 -29.4 40.8 2.6 29.7 -73.5 67.5 61.0 31.4 81.6
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Chapter 9: Innovation at the Microeconomic Level 

In Chapters 4, 5, 6 and 7, we have shown, visually through many charts and in simple 

linear regressions, that the quantity of real R&D capital stock of an economy has a positive and 

statistically significant effect on its numbers of patent applications and grants.  This is found 

to be true for not only the domestic patent applications and grants in each economy in our study, 

but also the foreign patent applications and/or grants of the U. S. Patent and Trademark Office 

(USPTO), the European Patent Office (EPO) and the China National Intellectual Property 

Administration (CNIPA).  In general, the higher the total quantity of real R&D capital stock in 

an economy is, the more domestic and international patent applications will be submitted by 

and patent grants awarded to its residents. 

 

In this chapter, we examine data from selected individual Chinese and U.S. enterprises 

to see whether the same relation holds at the microeconomic level, that is, whether a higher 

number of patent grants are awarded to individual enterprises with higher quantities of real 

R&D capital stock.  Cross-sectional U.S. firm-level data have been analysed by Hausman, Hall 

and Griliches (1984) and Hall, Griliches and Hausman (1986) in their pioneering studies on the 

relationship between the number of patent applications and R&D expenditure.  We use a 

different approach: we assemble time-series data on the R&D expenditures of specific, selected 

Chinese and U.S. enterprises as well as the numbers of Chinese and U.S. patents granted to 

these enterprises.  From the data on R&D expenditures, we construct estimates of the time 

series of the quantities of real R&D capital stock for each enterprise in 2019 U.S. dollars.  Then 

we attempt to relate the annual numbers of Chinese and U.S. patent grants to each enterprise 

to the quantities of its real R&D capital stock in the previous year. 

 

The specific Chinese enterprises that we have selected are China Petroleum and 

Chemical Corporation (Sinopec), Huawei Technologies Co., Ltd. (Huawei) and ZTE 

Corporation (ZTE).  They have been consistently among the annual top ten Chinese recipients 

of CNIPA patent grants.  The specific U.S. enterprises that we have selected are Apple Inc. 

(Apple), General Electric Company (GE), Hewlett-Packard Corporation (H-P),5 International 

Business Machines Corporation (IBM), Microsoft Corporation (Microsoft) and Qualcomm, all 

well-known U.S. high-technology companies. 

                                                 
5 The data for Hewlett-Packard Corporation are available up to 2015, after which it was split up into more than 

one successor corporation. 
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The Quantities of Real R&D Capital Stock 

 

First, we construct estimates of the time-series of the quantities of real R&D capital 

stock for each enterprise from its time-series of real R&D expenditures.6  The quantity of real 

R&D capital stock is derived as the cumulative past R&D expenditures in 2019 U.S. dollars 

less a ten-percent depreciation per year.7  In Chart 9-1, the quantities of real R&D capital stock 

of all the individual Chinese and U.S. enterprises under study are presented.  As of 2020, 

Microsoft Corporation had the highest quantity of real R&D capital stock, followed by Huawei 

Technology Co., Ltd., and Apple Inc.  IBM Corporation was the global leader until it was 

surpassed by Microsoft in 2013, and then by both Huawei and Apple in 2020.  General Electric 

used to be number two but fell to fifth place in 2020.  Qualcomm, whose real R&D capital 

stock had been rising fast, was in sixth place.  ZTE and Sinopec still lagged behind the other 

enterprises significantly in terms of the quantity of real R&D capital stock. 

  

                                                 
6 The R&D expenditures are converted into real R&D expenditures in national or regional currencies in 2019 

prices using the GDP deflators of the respective economies.  Annual GDP deflators are collected from 

International Financial Statistics (IFS) database and domestic official statistical sources.  The real R&D 

expenditures in national or regional currencies are then converted to U.S. dollars, using the 2019 year-end 

exchange rates. 
7 The initial real R&D capital stock for each enterprise is estimated by dividing the real R&D expenditure in the 

first year that R&D expenditure data are available by the sum of the rate of growth of real R&D expenditure in 

the first five years and the annual rate of depreciation, assumed to be 10%. 
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Chart 9-1: The Quantity of Real R&D Capital Stock, Selected Chinese and U.S. Enterprises 

  

Source: Authors’ calculations.  R&D expenditures for Chinese enterprises are collected from their annual reports 

(various years), supplemented by their financial reports from the Osiris Database.  R&D expenditures for U.S. 

enterprises are collected from the U.S. Securities and Exchange Commission and the Orbis Americas database. 

 

The Number of Patent Grants 

  

In Chart 9-2, the numbers of USPTO patent grants awarded to our selected enterprises 

are plotted against time.  IBM Corporation had a commanding lead in the number of USPTO 

patent grants.  In 2019, it was awarded 9,253 patents, compared to 3,080 for Microsoft.  Huawei, 

in fourth place with 2,417 USPTO patent grants, was just behind Apple with its 2,483 patent 

grants.  ZTE and Sinopec are at the bottom.8 

 

However, we note that the number of USPTO patents awarded to Apple Inc. has been 

almost stationary over time, even though the quantity of its real R&D capital stock has been 

rising rapidly (see Chart 9-1).  This is a little anomalous.  We conjecture that the slowdown in 

the number of patent grants awarded to Apple is due to the slowdown in the number of patent 

                                                 
8 The number of patent grants awarded to Sinopec is available for only three years.  This does not necessarily 

mean that Sinopec received no USPTO patent grants in the other years, but the USPTO published patents grants 

to a given applicant separately only if the number of patent grants awarded in a given year is greater than or 

equal to forty. 
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applications submitted by Apple, and not necessarily due to a slowdown of the discoveries and 

inventions at Apple.  There may possibly be two reasons for the slowdown in patent 

applications: disclosure avoidance or tax avoidance.  Disclosure avoidance is a strategy 

sometimes used by a corporation to avoid alerting its competitors of its product development 

strategy and progress thereof.  The corporation may forego patent applications altogether or 

may apply for patents at relatively obscure locations so as to avoid widespread dissemination 

of the disclosure.  Tax avoidance is a strategy to vest the ownership of patents in a subsidiary 

in a low-tax jurisdiction, such as the Republic of Ireland, so as to reduce the profit or income 

tax payable on any potential royalties and license fees to be earned from the patents. 

 

Chart 9-2: The Number of USPTO Patent Grants, Selected Chinese and U.S. Enterprises 

 

Source: USPTO. 

Note: Organisations with less than 40 patent grants awarded are not separately listed on the USPTO website. 

 

In Chart 9-3, the number of CNIPA patent grants awarded to our selected enterprises 

are plotted against time.  It is clear that the numbers of CNIPA patent grants of all the selected 

enterprises, Chinese and U.S., have been rising rapidly over time, much more so than their 

respective numbers of USPTO patents.9  In 2020, Huawei had the highest number of CNIPA 

patent grants (6,413), followed by Sinopec (2,954) and ZTE (1,348).  Qualcomm had the 

                                                 
9 The number of CNIPA patent grants awarded to IBM began to decline in 2017. 
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highest number of CNIPA patents among U.S. enterprises (1,158 in 2020), followed by 

Microsoft and Apple.  For reasons not apparent, the number of CNIPA patent grants of IBM 

has been declining over time since 2017. 

 

Chart 9-3: The Number of CNIPA Patent Grants, Selected Chinese and U.S. Enterprises 

 

Source: Patsnap database (https://www.zhihuiya.com/). 

 

We note an interesting but not unexpected phenomenon—for all of these enterprises, 

the numbers of their home patent grants have always been greater than the numbers of their 

foreign patent grants over our period of study.  Thus, Sinopec, Huawei, and ZTE have had 

more CNIPA patent grants than USPTO patent grants awarded to them each year.  Similarly, 

Apple, GE, H-P, IBM, Microsoft, and Qualcomm have had more USPTO patent grants than 

CNIPA patent grants awarded to them each year, with the exception of the years 2016-2019 

for H-P.10 

 

 

 

                                                 
10 See Tables A9-2 and A9-3 in the Appendix.  By 2016, Hewlett-Packard Corporation has already been split 

into several independent entities and Mainland China has become the manufacturing hub for them. 
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The Relationship between the Number of Patent Grants and the Quantity of Real 

R&D Capital Stock 

 

In Chart 9-4, the annual number of USPTO patent grants awarded to each enterprise is 

plotted against the quantity of its R&D capital stock in 2019 U.S. dollars of the previous year.  

We find the same positive relationship between the number of patent grants and the quantity 

of real R&D capital stock found at the macroeconomic level of an economy in the earlier 

chapters.  The linear regressions, with and without enterprise-specific constants, both fit quite 

well and yield statistically significant coefficients.11  The estimated elasticity of the number of 

USPTO patent grants with respect to the quantity of real R&D capital stock lies between 0.968 

and 1.056, or approximately one, that is, a one-percent increase in the real R&D capital stock 

increases the number of USPTO patent grants by approximately one percent.  However, IBM 

seems to be an outlier, and perhaps also GE.  The problem appears to be that the quantity of its 

real R&D capital stock is no longer growing but the number of its patent grants keeps rising, 

resulting in a very steep enterprise-specific USPTO patent grant-real R&D capital stock line.  

One possible conjecture is that the rate of depreciation of 10 percent per annum may have been 

too high for these enterprises if a high proportion of their R&D expenditures were devoted to 

basic research, in which case a higher quantity of real R&D capital would have been implied. 

                                                 
11 As might be expected, the linear regression with enterprise-specific constants fits much better.  The red line in 

Chart 9-4 is drawn with a constant term set equal to the weighted average of all the enterprise-specific constants 

with the shares of the number of observations of each enterprise in the total number of observations as weights. 
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Chart 9-4: The Number of USPTO Patent Grants 

and the Quantity of Real R&D Capital Stock, Selected Chinese and U.S. Enterprises 

 

Source: Table A9-1 and Table A9-2. 

 

In Chart 9-5, the annual number of CNIPA patent grants awarded to each enterprise is 

plotted against the quantity of its R&D capital stock in 2019 U.S. dollars of the previous year.  

However, the scatter diagram itself, unlike Chart 9-4, does not show a clear correlation between 

the number of CNIPA patent grants and the quantity of real R&D capital stock.  The fit of the 

simple linear regression is poor, with an adjusted 𝑅2 of only 0.0507, even though the estimated 

coefficient of the natural logarithm of the quantity of real R&D capital stock is positive and 

statistically significant.  Yet the implied elasticity of the number of patent grants with respect 

to the quantity of real R&D capital stock is an implausibly low 0.329.  We believe this low 

estimate is the result of the very diverse behaviour of the Chinese and U.S. enterprises.  The 

linear regression with enterprise-specific constants fits much better, with an adjusted 𝑅2 of 

0.9552, but yields an incredibly high elasticity of 1.525 (the red line).12  Moreover, it is also 

apparent from the scatter diagram that a straight line (the blue line) can be drawn so that the 

data points for all of the Chinese enterprises (except for one observation for ZTE in 2005) lie 

on one side and those of all U.S. enterprises lie on the other.  This suggests that the experiences 

                                                 
12 The red line in Chart 9-5 is drawn with a constant term set equal to the weighted average of all the enterprise-

specific constants with the shares of the number of observations of each enterprise in the total number of 

observations as weights. 
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of the selected Chinese and U.S. enterprises with the CNIPA must have been quite different.  

We believe this may be due to the differences in the CNIPA patent application rates between 

the Chinese and U.S. enterprises.13  At the economy-wide level, CNIPA grant rates for the U.S. 

(59% in 2019) have been consistently higher than those for Mainland China (26% in 2019).14  

Unfortunately, it has not been possible to find data on enterprise-specific CNIPA patent 

application rates.  We note, however, that the appearance of the scatter of data points in Charts 

9-4 and 9-5 for both IBM and GE are quite similar (the respective data points are on top of one 

another), even though they apply to different patent grants, USPTO and CNIPA, respectively.  

This suggests that perhaps the quantities of real R&D capital stocks of these two enterprises 

may have been under-estimated because of the possible over-depreciation of their basic 

research capital. 

 

Chart 9-5: The Number of CNIPA Patent Grants 

and the Quantity of Real R&D Capital Stock, Selected Chinese and U.S. Enterprises 

 

Source: Table A9-1 and Table A9-3. 

 

In Charts 9-6 and 9-7, we present the data for the selected Chinese and U.S. enterprises 

separately.  Chart 9-6 shows the same positive and monotonic effect of the quantity of real 

                                                 
13 For U.S. enterprises, it may be necessary to strike a balance between the avoidance of disclosure and the need 

for intellectual property right protection. 
14 See Chapter 7. 
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R&D capital stock of a Chinese enterprise on the annual number of CNIPA patent grants 

awarded to it.  The fit of the simple linear regression is good, with an adjusted 𝑅2 of 0.8582.  

The estimated elasticity of 1.159 suggests the existence of a reasonable degree of economies 

of scale in real R&D capital at the enterprise level. 

 

Chart 9-6: The Number of CNIPA Patent Grants 

and the Quantity of Real R&D Capital Stock, Selected Chinese Enterprises 

 

Source: Same as Chart 9-5. 

 

In Chart 9-7, the data of only the U.S. enterprises are presented.  The fit of the simple 

linear regression is not that good, with an adjusted 𝑅2 of only 0.2338, even though the 

estimated coefficient of 0.799 is statistically significant.  The fit of the linear regression with 

enterprise-specific constants is much better, with an adjusted 𝑅2 of 0.9313 (the red line).15  

However, the estimated coefficient of 1.765 also implies an incredibly high degree of 

economies of scale.  We believe this may be due to the possible over-depreciation of real basic 

research capital in a couple of the U.S. enterprises as well as the rapidly rising enterprise-

specific patent application and patent grant rates over time.  We note that the steep enterprise-

specific CNIPA patent grant-real R&D capital lines in Chart 9-7 are not dis-similar to the 

                                                 
15 Similar to the red lines in Charts 9-4 and 9-5, the red line in Chart 9-7 is drawn with a constant term set equal 

to the weighted average of all the enterprise-specific constants with the shares of the number of observations of 

each enterprise in the total number of observations as weights. 

10

100

1,000

10,000

0.1 1 10 100

T
h

e 
N

u
m

b
er

 o
f 

C
N

IP
A

 P
a
te

n
t 

G
ra

n
ts

The Quantity of R&D Capital Stock Lagged one Year (Billion 2019 US$)

Sinopec

Huawei

ZTE

Linear Regression Line

Adj. R2=0.8582



25 
 

corresponding economy-specific lines in Chart 7-8 above.  For U.S. enterprises, Mainland 

China is a large and rapidly growing new market and CNIPA patenting is a new game, leading 

to continuing large increases in patent applications (and patent grants), based in part on their 

reserve pools of not-yet-CNIPA-patented discoveries and inventions, which are not affected by 

the current levels of real R&D capital stock.  As in Chapter 7 above, we do not believe that the 

actual elasticity of patent grants with respect to real R&D capital can be so high.  The high 

estimate is probably an artifact of the rapid increases in the CNIPA patent application and 

patent grant rates of the selected U.S. enterprises. 

 

Chart 9-7: The Number of CNIPA Patent Grants 

and the Quantity of Real R&D Capital Stock, Selected U.S. Enterprises 

 

Source: Same as Chart 9-5. 
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Summary 

 

From our analysis of the data from an admittedly limited number of Chinese and U.S. 

enterprises, the evidence suggests that there exists a positive and monotonic dependence of the 

number of patent grants on the quantity of the real R&D capital stock at the microeconomic 

level as at the macroeconomic level.  In addition, there also appears to be some degree of 

economies of scale in the creation of patents from R&D activities at the enterprise level.  

However, there is also some evidence that real R&D capital may have a useful life beyond ten 

years, depending on the share of basic research in total R&D expenditures, the verification of 

which will have to await further study. 
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Appendix 

Table A9-1: The Estimated Quantities of Real R&D Capital Stock, 

Selected Chinese and U.S. Enterprises (billion 2019 US$) 

 

Sources: Authors’ calculations.  The values of R&D expenditures for Chinese and U.S. enterprises are collected 

from Osiris Publicly Listed Companies Worldwide Database. 

  

China

Petroleum and

Chemical

Corporation

Huawei

Technologies

Co., LTD.

ZTE

Corporation
Apple Inc.

General

Electric

Company

Hewlett-

Packard

Corporation

International

Business

Machines

Corporation

Microsoft

Corporation
Qualcomm

10.933 12.761 0.888 0.088

10.835 13.982 1.201 0.118

10.756 43.790 15.287 1.668 0.148

10.764 42.597 16.629 58.147 2.268 0.178

10.588 41.116 18.201 59.295 3.014 0.239

10.489 39.962 19.980 59.885 4.057 0.341

10.368 38.861 22.154 61.041 5.850 0.556

10.063 37.829 24.584 62.296 8.170 0.856

1.200 0.027 9.509 36.926 27.132 63.597 11.234 1.292

1.387 0.053 9.020 36.201 28.008 65.335 14.480 1.724

1.723 0.098 8.664 35.736 28.997 66.534 18.464 2.041

1.897 0.370 8.403 35.470 29.857 67.329 22.783 2.421

2.112 0.634 8.181 35.570 31.540 67.180 26.475 2.805

2.450 0.970 8.004 35.627 33.354 67.371 30.167 3.237

2.574 1.424 7.854 36.160 34.665 68.152 37.401 3.867

2.317 1.740 7.756 36.946 35.683 68.844 41.496 4.780

2.738 2.204 7.869 36.731 36.594 69.577 45.559 6.220

3.179 5.867 2.654 8.032 36.713 37.321 70.094 49.653 7.820

3.525 7.310 3.163 8.550 36.641 37.811 70.635 54.416 9.756

3.914 9.171 3.970 9.272 36.879 37.363 70.454 59.629 11.666

4.402 11.462 4.862 10.427 37.750 37.086 70.453 63.852 13.364

4.779 14.302 5.805 12.166 39.243 37.103 70.573 67.821 15.457

5.262 17.764 6.676 14.748 40.397 37.211 70.595 72.061 18.309

5.756 21.070 7.198 18.214 41.483 36.951 69.877 76.349 21.963

6.076 25.471 7.913 22.941 41.924 34.663 68.783 81.052 25.703

6.369 32.418 9.065 29.301 42.290 32.475 67.534 85.870 29.023

6.665 41.170 9.994 37.038 43.091 66.861 90.013 31.590

6.966 50.556 10.946 45.404 43.133 66.001 94.599 34.148

7.426 60.260 11.437 55.348 42.293 64.873 100.122 36.456

8.028 73.077 12.089 66.030 41.179 64.375 106.985 38.209

U.S. EnterprisesChinese Enterprises
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Table A9-2: The Number of USPTO Patent Grants, 

Selected Chinese and U.S. Enterprises 

 

Sources: USPTO (https://www.uspto.gov/web/offices/ac/ido/oeip/taf/reports_topo.htm). 

  

China

Petroleum

and

Chemical

Corporation

Huawei

Technologies

Co., LTD.

ZTE

Corporation
Apple Inc.

General

Electric

Company

Hewlett-

Packard

Corporation

International

Business

Machines

Corporation

Microsoft

Corporation
Qualcomm

1995 107 758 470 1,383 46

1996 169 819 501 1,867 97 48

1997 206 664 530 1,724 199 45

1998 256 729 805 2,657 334 82

1999 169 699 850 2,756 352 110

2000 85 787 901 2,886 344 110

2001 97 1,107 978 3,411 396 173

2002 76 1,416 1,061 3,288 499 196

2003 80 1,139 1,292 3,415 499 178

2004 94 976 1,775 3,248 629 283
2005 85 904 1,790 2,941 746 200

2006 106 1,051 2,099 3,621 1,463 399

2007 118 911 1,466 3,125 1,637 278

2008 48 185 911 1,422 4,169 2,026 286

2009 82 289 976 1,269 4,887 2,901 356

2010 251 563 1,222 1,480 5,866 3,086 657

2011 356 676 1,444 1,307 6,148 2,309 923

2012 532 101 1,136 1,650 1,393 6,457 2,610 1,292

2013 685 273 1,775 1,737 1,358 6,788 2,659 2,103

2014 773 705 2,003 1,858 1,573 7,481 2,829 2,586

2015 40 799 416 1,937 1,756 1,304 7,309 2,408 2,900

2016 44 1,198 472 2,101 1,644 8,023 2,398 2,897

2017 48 1,472 407 2,225 1,575 8,996 2,440 2,626

2018 1,680 389 2,147 1,584 9,088 2,353 2,300

2019 2,417 263 2,483 1,816 9,253 3,080 2,348

U.S. EnterprisesChinese Enterprises
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Table A9-3: The Number of CNIPA Patent Grants, 

Selected Chinese and U.S. Enterprises 

 

Sources: Patsnap database (https://analytics.zhihuiya.com/search/input#/simple). 

  

China Petroleum

and Chemical

Corporation

Huawei

Technologies

Co., LTD.

ZTE Corporation Apple Inc.
General Electric

Company

Hewlett-Packard

Corporation

International

Business

Machines

Corporation

Microsoft

Corporation
Qualcomm

1987 1

1988 1 4

1989 5 18 1 18

1990 4 1 24 4 21

1991 4 0 11 4 18

1992 12 3 28 8 28

1993 12 0 16 6 39

1994 26 1 7 0 30 1

1995 28 0 9 0 30 0

1996 21 0 8 1 18 1

1997 22 0 8 1 11 3

1998 19 1 0 10 1 19 1

1999 58 0 0 14 0 30 0

2000 167 8 1 0 25 1 59 5

2001 202 10 1 0 27 5 31 16

2002 179 16 6 3 29 24 119 37

2003 480 126 87 16 53 42 273 11 105

2004 546 501 82 20 52 61 385 20 206
2005 547 487 39 17 74 84 243 24 152

2006 458 448 250 25 64 66 299 28 132

2007 363 935 289 22 118 77 407 70 136

2008 425 2,342 581 45 165 117 674 154 190

2009 474 3,400 1,359 59 219 202 912 342 300

2010 519 2,503 2,004 53 205 172 699 422 340

2011 548 2,475 2,657 70 275 162 470 339 306

2012 992 2,469 2,276 130 396 239 492 496 603

2013 1,772 2,177 1,286 209 510 175 319 542 1,040

2014 1,958 2,149 1,832 287 489 164 277 437 1,029

2015 2,767 2,172 1,978 410 693 172 392 690 1,305

2016 2,910 2,704 1,609 502 1,013 272 736 840 1,596

2017 2,809 3,092 1,634 510 634 210 788 520 1,228

2018 3,013 3,318 1,797 656 450 254 458 589 1,651

2019 3,012 4,530 1,459 834 496 328 269 815 1,586

2020 2,954 6,413 1,348 581 515 400 105 733 1,158

Chinese Enterprises U.S. Enterprises
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Chapter 10: The Econometric Models 

The annual numbers of patent applications submitted and patent grants received by an 

economy is a useful indicator of its degree of success in Research and Development (R&D) 

activities because a patent application or grant must have been based on some underlying 

original discovery or invention.  We begin with the assumption that there exist functions, 

possibly specific to each individual economy, relating the annual numbers of patent 

applications to the annual quantities of real Research and Development (R&D) capital stock, 

which may be taken to be a measure of the capacity of each economy for conducting R&D and 

achieving successful outcomes at any given time.  In turn, the annual numbers of patent grants 

awarded to each economy may depend on its annual numbers of patent applications, 

appropriately lagged (the average lag will be assumed to be one year in this study).  These 

functions will be referred to as the “patent application production functions” and the “patent 

grant production functions” respectively.  Indirectly, the annual numbers of patent grants are 

also functions of the lagged annual quantities of real R&D capital stock. 

 

There is of course no a priori reason why the same functional relationships should apply 

to both domestic and foreign patent applications and grants across all the economies included 

in our study.  This is especially true for domestic patent applications and grants, because the 

domestic propensities to apply for as well as to grant patents may depend very much on the 

domestic conditions, cultures, customs, markets, policies, practices, procedures and standards, 

in addition to the domestic capacities for R&D, proxied by the quantities of their respective 

real R&D capital stocks.  For a variety of reasons that are discussed in Chapter 3, the domestic 

patent application behaviour and the USPTO patent application behaviour can be quite 

different in some economies, especially in the ones with relatively small home markets, and 

often do not depend solely on the qualities and quantities of the outcomes of  their respective 

R&D activities.  However, for the United States Patent and Trademark Office (USPTO) patent 

applications and grants, it is more plausible for the same functional relationships to hold across 

economies, since the U.S. market itself is important for almost all economies and the same 

procedures and standards have been and are used by the USPTO to assess the quality of the 

patent applications received from applicants in different parts of the world. 

 

As a result of these considerations, we shall focus our econometric analysis on only 

USPTO patent applications and grants and not the respective domestic patent applications and 

grants.  Even then, the propensity to apply for a USPTO patent, given an original discovery or 
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invention of a certain quality, may still vary significantly across economies and change over 

time for different reasons.  In particular, this is especially likely to be true for economies in 

which the annual numbers of domestic patent applications are smaller than their annual 

numbers of USPTO patent applications.  It is reasonable to assume that if a discovery or 

invention is good enough for a USPTO patent application, it should be good enough, in terms 

of quality, for a domestic patent application.  Moreover, the cost of application, and subsequent 

maintenance if granted, of a USPTO patent is in general much more expensive than that of a 

domestic patent, which should bias the application in favour of a domestic patent.  However, 

as Chart 5-4 in Chapter 5 shows, for six of the twelve economies included in our study—

Canada, Hong Kong (China), Italy, Singapore, Taiwan (China), and the U.K., the annual 

number of USPTO patent applications has exceeded the annual number of domestic 

applications quite regularly.  Thus, the patent applications of these economies, both domestic 

and foreign, must have been subject to considerations extraneous to the intrinsic quality of their 

discoveries or inventions, and their annual numbers are therefore potentially biased indicators 

of their degrees of R&D success.  Our econometric analysis will therefore be restricted to 

USPTO patent applications and grants of the six economies in which the annual numbers of 

domestic patent applications exceed the annual numbers of USPTO patent applications, that is, 

Mainland China, France, Germany, Japan, South Korea and the U.S.  Moreover, in order to 

assure comparability and consistency of the data over time and across economies, we have used 

only the data between certain years for the different economies in the analyses in this Chapter 

and Chapter 11.  The beginning and ending years of the data used for each economy in these 

two chapters are presented in Appendix Table A10-1. 

 

A Model for USPTO Patent Applications 

 

First, we formulate a model for USPTO patent applications.  In Chart 10-1, the natural 

logarithm of the annual number of USPTO patent applications of each of the six economies is 

plotted against the natural logarithm of the respective quantity of real R&D capital stock in 

each year.  Chart 10-1 provides prima facie evidence that there exists a stable, positive 

relationship between the annual number of USPTO patent applications and the quantity of real 

R&D capital stock, across the six economies and over time.  However, there appears to be some 

divergence among the economies, especially between the developed economies on the one 

hand and the developing and newly industrialised economies of East Asia on the other. 
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Chart 10-1: The Natural Logarithm of the Annual Number of USPTO Patent Applications 

versus the Natural Logarithm of the Quantity of Real R&D Capital Stock 

 

Source: Authors’ calculations.  Data on the numbers of USPTO patent applications are from Table A5-1 and data 

on the quantity of real R&D capital stocks from Table A3-2. 

 

In general, the number of USPTO patent applications in the ith economy in year t, 

𝑌𝐴𝑈𝑆𝑖𝑡, may be taken to be a measure of the outcome resulting from R&D activities in that 

year.  It may be expressed as a function of 𝐾𝑖𝑡, the quantity of real R&D capital stock in the ith 

economy in year t.  Thus, 

𝑌𝐴𝑈𝑆𝑖𝑡 = 𝐹𝑖(𝐾𝑖𝑡), (10-1) 

where 𝐹𝑖(𝐾𝑖𝑡) is the “patent application production function” that relates the annual number of 

USPTO patent applications to the quantity of real R&D capital stock in the ith economy in that 

year.  Note that the function 𝐹𝑖(.), subscripted by i, may vary with the particular economy, but 

is assumed not to vary over time. 

 

We assume, however, that after an economy-specific and time-varying transformation, 

𝑌𝐴𝑈𝑆𝑖𝑡, the measured annual number of USPTO patent applications, may be converted into an 

“efficiency-equivalent” or “quality-equivalent” number of USPTO patent applications, 𝑌𝐴𝑈𝑆𝑖𝑡
∗ , 

that is comparable across economies.  Thus, for example, it is possible that one USPTO patent 

application submitted by a U.S. resident is equivalent to two USPTO patent applications 

submitted by a Chinese resident in terms of quality, or vice versa.  However, 𝑌𝐴𝑈𝑆𝑖𝑡
∗  is not 
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directly observable.  It is assumed that 𝑌𝐴𝑈𝑆𝑖𝑡
∗  is related to the directly observable 𝑌𝐴𝑈𝑆𝑖𝑡 by 

an economy- and time-specific augmentation factor 𝐴𝐴𝑈𝑆𝑖(𝑡):  

𝑌𝐴𝑈𝑆𝑖𝑡
∗ = 𝐴𝐴𝑈𝑆𝑖(𝑡)𝑌𝐴𝑈𝑆𝑖𝑡  . (10-2) 

More specifically, 𝐴𝐴𝑈𝑆𝑖(𝑡), the patent application augmentation factor of the ith economy, is 

assumed to take the constant exponential form, so that: 

𝑌𝐴𝑈𝑆𝑖𝑡
∗   = 𝐴𝐴𝑈𝑆𝑖exp(𝑐𝑈𝑆𝑖t) 𝑌𝐴𝑈𝑆𝑖𝑡,  (10-3) 

where 𝐴𝐴𝑈𝑆𝑖 and 𝑐𝑈𝑆𝑖 are constants that may vary with i, that is, they depend on the specific 

economy.  𝐴𝐴𝑈𝑆𝑖  may be identified as the augmentation level parameter and 𝑐𝑈𝑆𝑖  as the 

augmentation rate parameter of the patent application augmentation factor of the ith economy.  

𝐴𝐴𝑈𝑆𝑖 is a positive constant that may be greater than, equal to, or less than one, and is the 

“efficiency-equivalent” conversion ratio of the USPTO patent applications of the ith economy 

at t=0; and 𝑐𝑈𝑆𝑖 is a constant that may be greater than, equal to, or less than zero, and is the rate 

of change of the “efficiency-equivalent” conversion ratio of the ith economy per unit time.  We 

note that, without loss of generality, for one economy, 𝐴𝐴𝑈𝑆𝑖 can be taken to be unity; this is 

equivalent to choosing that economy’s number of patent applications at t=0 to be the numeraire. 

 

Similarly, the measured quantity of real R&D capital stock of the ith economy, 𝐾𝑖𝑡, 

may also be converted into an “efficiency-equivalent” or “quality-equivalent” quantity of real 

R&D capital stock, 𝐾𝑖𝑡
∗
 
, that is also comparable across economies.  Specifically, it is assumed 

that: 

𝐾𝑖𝑡
∗   =𝐴𝐾𝑖(𝑡)𝐾𝑖𝑡 = 𝐴𝐾𝑖exp( Kic t) 𝐾𝑖𝑡, (10-4) 

where 𝐴𝐾𝑖  and Kic  are constants that may be identified as respectively the constant capital 

augmentation level and rate parameters that may vary with the particular economy.  We also 

note that, without loss of generality, for one economy, 𝐴𝐾𝑖 can be taken to be unity (so that 

ln𝐴𝐾𝑖=0); this is equivalent to choosing that economy’s quantity of real R&D capital stock at 

t=0 to be the numeraire. 

 

Since both the “efficiency-equivalent” quantities of patent applications, 𝑌𝐴𝑈𝑆𝑖𝑡
∗ ’s, and 

real R&D capital stocks, 𝐾𝑖𝑡
∗ ’s, are supposedly comparable across economies, we can assume 

that they are related by a common production function F(.) that applies across economies: 

𝑌𝐴𝑈𝑆𝑖𝑡
∗

 
= F(𝐾𝑖𝑡

∗ ), (10-5) 
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where F(.) is the so-called “meta-production function”.16  What this means is that if we can 

measure the outputs and the inputs of each economy appropriately, so that they are “efficiency-

equivalent” or “quality-equivalent”, they can be related by the same functional relationship 

across economies.  In our empirical implementation, it is assumed that the function F(.) in 

equation (10-5) takes the transcendental logarithmic form, introduced by Christensen, 

Jorgenson and Lau (1971), so that: 

ln𝑌𝐴𝑈𝑆𝑖𝑡
∗  = ln𝐴0+𝛼𝐾ln𝐾𝑖𝑡

∗  +
1

2
B𝐾𝐾(ln𝐾𝑖𝑡

∗ )2.  (10-6) 

By substituting equation (10-3) into equation (10-6), we obtain: 

ln𝑌𝐴𝑈𝑆𝑖𝑡 + ln𝐴𝐴𝑈𝑆𝑖 + 𝑐𝑈𝑆𝑖t  = ln𝐴0+𝛼𝐾ln𝐾𝑖𝑡
∗  +

1

2
B𝐾𝐾(ln𝐾𝑖𝑡

∗ )2.  (10-7) 

By substituting equation (10-4) into equation (10-7), and re-arranging, we obtain: 

ln𝑌𝐴𝑈𝑆𝑖𝑡 = −ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖t + ln𝐴0+𝛼𝐾(ln𝐴𝐾𝑖+ Kic t + ln𝐾𝑖𝑡) 

                  + 
1

2
B𝐾𝐾(ln𝐴𝐾𝑖+ Kic t + ln𝐾𝑖𝑡)

2  (10-8) 

    = (−ln𝐴𝐴𝑈𝑆𝑖 + ln𝐴0+𝛼𝐾ln𝐴𝐾𝑖+
1

2
B𝐾𝐾(ln𝐴𝐾𝑖)

2) + (𝛼𝐾+B𝐾𝐾ln𝐴𝐾𝑖)ln𝐾𝑖𝑡 

        +(−𝑐𝑈𝑆𝑖+ (𝛼𝐾+B𝐾𝐾ln𝐴𝐾𝑖) Kic )t+B𝐾𝐾 Kic ln𝐾𝑖𝑡.t+
1

2
B𝐾𝐾(ln𝐾𝑖𝑡)

2 +
1

2
B𝐾𝐾

2

Kic t
2

.

                   (10-9) 

Equation (10-9) may be simplified into: 

ln 𝑌𝐴𝑈𝑆𝑖𝑡 = 𝐴𝐴𝑈𝑆𝑖
∗ + (𝛼𝐾 + B𝐾𝐾ln𝐴𝐾𝑖) ln 𝐾𝑖𝑡 + 𝑐𝑈𝑆𝑖

∗ t + B𝐾𝐾 Kic  ln𝐾𝑖𝑡.t +
1

2
B𝐾𝐾(ln𝐾𝑖𝑡)

2 

                    +
1

2
B𝐾𝐾

2

Kic t
2

,  (10-10) 

where 

𝐴𝐴𝑈𝑆𝑖
∗ ≡ (−ln𝐴𝐴𝑈𝑆𝑖+ ln𝐴0+𝛼𝐾ln𝐴𝐾𝑖+

1

2
B𝐾𝐾(ln𝐴𝐾𝑖)

2); and 

𝑐𝑈𝑆𝑖
∗ ≡ (−𝑐𝑈𝑆𝑖+ (𝛼𝐾 + B𝐾𝐾ln𝐴𝐾𝑖) Kic ).  (10-11) 

We note that the two parameters, 𝐴𝐴𝑈𝑆𝑖
∗  and 𝑐𝑈𝑆𝑖

∗ , are unconstrained across economies, since 

ln𝐴𝐴𝑈𝑆𝑖  and 𝑐𝑈𝑆𝑖  are free to assume any value for each economy, but 𝛼𝐾  and B𝐾𝐾  must be 

identical across economies. 

 

Equation (10-10) is written entirely in terms of directly observable variables 𝑌𝐴𝑈𝑆𝑖𝑡 

and 𝐾𝑖𝑡  rather than the unobservable variables 𝑌𝐴𝑈𝑆𝑖𝑡
∗  and 𝐾𝑖𝑡

∗ , and hence can be directly 

estimated from the empirical data.  However, we note that in equation (10-10), the square of 

                                                 
16 However, this assumption of the existence of a meta-production function can and will be explicitly tested 

statistically. 
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the coefficient of the fourth term, ln𝐾𝑖𝑡.t, divided by the coefficient of the fifth term, 
1

2
 (ln𝐾𝑖𝑡)

2, 

must be equal to the coefficient of the sixth term, 
1

2
 t 2

.  This is a direct consequence of the 

meta-production function model and implies a nonlinear restriction on these parameters for 

each economy, which will be referred to as the “First Necessary Condition” for the validity of 

the meta-production function model. 

 

Moreover, equation (10-10) further implies that the  coefficients of the fifth term, 

1

2
 (ln𝐾𝑖𝑡)

2 , B𝐾𝐾 ’s, should be identical across all economies.  This is the second necessary 

condition for the validity of the meta-production function model.  These latter cross-economy 

restrictions will be referred to as the “Equality” restrictions.  The “Equality” hypothesis is 

tested across all economies that satisfy the first necessary condition, with the restrictions 

implied by the “First Necessary Condition” as the maintained hypothesis.  If both the “First 

Necessary Condition” and the “Equality” restrictions are accepted, the validity of the meta-

production function model is confirmed, and these restrictions will be imposed in the further 

estimation of the model. 

 

In principle, equation (10-10) can be directly estimated individually or jointly for all 

six economies.  However, in order to minimise the possibility of serial correlation of the 

stochastic disturbance terms, equation (10-10) is estimated in its first-differenced form in the 

empirical implementation.  Lagging equation (10-10) by one period, we have: 

ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) = 𝐴𝐴𝑈𝑆𝑖
∗ + (𝛼𝐾 + B𝐾𝐾ln𝐴𝐾𝑖) ln𝐾𝑖(𝑡−1) + 𝑐𝑈𝑆𝑖

∗ (t − 1)+B𝐾𝐾 Kic  ln𝐾𝑖(𝑡−1).(t-1) 

 +
1

2
B𝐾𝐾(ln𝐾𝑖(𝑡−1))

2 +
1

2
B𝐾𝐾

2

Kic (t-1)
2

.  (10-12) 

Subtracting equation (10-12) from equation (10-10), we obtain: 

ln𝑌𝐴𝑈𝑆𝑖𝑡 − ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) = 𝑐𝑈𝑆𝑖
∗ + (𝛼𝐾 + B𝐾𝐾ln𝐴𝐾𝑖)(ln𝐾𝑖𝑡 − ln𝐾𝑖(𝑡−1)) 

           + B𝐾𝐾 Kic (ln𝐾𝑖𝑡.t −ln𝐾𝑖(𝑡−1).(t−1)) + 
1

2
B𝐾𝐾((ln𝐾𝑖𝑡)

2 −(ln
2

( 1) )i tK  ) + B𝐾𝐾
2

Kic t 

            −  
1

2
B𝐾𝐾

2

Kic    

= 𝑐𝑈𝑆𝑖
∗∗ + (𝛼𝐾 + B𝐾𝐾ln𝐴𝐾𝑖)(ln𝐾𝑖𝑡 − ln𝐾𝑖(𝑡−1)) + B𝐾𝐾 Kic (ln𝐾𝑖𝑡.t − ln𝐾𝑖(𝑡−1).(t−1)) 

    + B𝐾𝐾
2

Kic t + 
1

2
B𝐾𝐾((ln𝐾𝑖𝑡)

2 − (ln𝐾𝑖(𝑡−1))
2),  (10-13) 
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where 𝑐𝑈𝑆𝑖
∗∗  ≡ 𝑐𝑈𝑆𝑖

∗ − 
1

2
B𝐾𝐾

2

Kic ≡ (−𝑐𝑈𝑆𝑖+ (𝛼𝐾 + B𝐾𝐾ln𝐴𝐾𝑖) Kic )− 
1

2
B𝐾𝐾

2

Kic .  Equation (10-13) 

is then the actual basic estimating equation for the model of USPTO patent applications.  We 

note that there are five terms on the right-hand-side of equation (10-13).  They are the constant 

term, (ln𝐾𝑖𝑡 − ln𝐾𝑖(𝑡−1)), (ln𝐾𝑖𝑡 .t −  ln𝐾𝑖(𝑡−1) .(t−1)), t, and  
1

2
 ((ln𝐾𝑖𝑡)

2  −  (ln𝐾𝑖(𝑡−1))
2 ).  

However, not all of the coefficients of the different terms are independent.  The square of the 

coefficient of (ln𝐾𝑖𝑡.t − ln𝐾𝑖(𝑡−1).(t−1)), B𝐾𝐾 Kic , divided by the coefficient of  
1

2
 ((ln𝐾𝑖𝑡)

2 − 

(ln𝐾𝑖(𝑡−1))
2), B𝐾𝐾, must be equal to the coefficient of the time trend, B𝐾𝐾

2

Kic .  These nonlinear 

restrictions are precisely the equivalent of the “First Necessary Condition” in equation (10-10) 

in the first-differenced form. 

 

Equation (10-13) may first be estimated without imposing any restrictions on the 

parameters.  This may be referred to as the “Unconstrained Model”.  In this unconstrained form, 

equation (10-13) is linear in all its parameters.  The “First Necessary Condition”, which implies 

one restriction per economy, may then be individually tested for all of the six included 

economies.  If this restriction is rejected for any economy, that economy cannot be included in 

the same meta-production function model as the other economies.  Equation (10-13) may then 

be estimated jointly for all six included economies after heteroscedastic adjustments17, both 

with and without the six restrictions implied by the “First Necessary Condition”.  The 

difference in the sum of squares of residuals between the unconstrained and the restricted 

estimation, divided by the relevant degrees of freedom, is asymptotically distributed as a χ2 

variable.  A large value of the χ2 variable implies rejection of the null hypothesis being tested. 

 

Subject to the acceptance of the joint test for the “First Necessary Condition”, we 

proceed to test the “Equality” hypothesis of identical B𝐾𝐾’s across all economies, conditional 

on this joint hypothesis.  If both tests are accepted, the validity of the meta-production function 

model is confirmed.  We then proceed to test whether B𝐾𝐾  = 0.  B𝐾𝐾= 0 implies that the 

elasticity of the annual number of USPTO patent applications with respect to the quantity of 

real R&D capital stock is a constant that is identical across economies.  There is a question of 

how many restrictions are implied by the hypothesis of B𝐾𝐾= 0.  In principle, it is only a 

restriction on a single parameter, because only B𝐾𝐾  is involved.  However, assuming the 

                                                 
17 The heteroskedastic adjustments are made using the estimated standard errors of the stochastic disturbance 

terms of equation (10-13) for the individual economies. 
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validity of the meta-production function model, with 6 economies, there are 19 independent 

parameters in equation (10-13).  With the restriction of B𝐾𝐾= 0, there are only 7 independent 

parameters left to be estimated, so that the effective number of restrictions is actually 12 (19-

7).  We shall test this hypothesis as if it consists of 12 restrictions. 

 

If the hypothesis of B𝐾𝐾  = 0 is rejected, we proceed to test the following specific 

hypotheses on the other parameters: (1) identical Kic ’s across economies; (2) identical 𝐴𝐾𝑖’s 

across economies (implying ln𝐴𝐾𝑖=0, all i, since 𝐴𝐾𝑖 =1 for the numeraire economy); and (3) 

identical 𝑐𝑈𝑆𝑖’s across economies.  However, if the hypothesis of B𝐾𝐾 = 0 cannot be rejected, 

the parameters of the USPTO patent application and real R&D capital augmentation factors 

may not be identifiable, and these additional hypotheses (1) through (3) cannot be tested.  Thus, 

the hypothesis of B𝐾𝐾 = 0 is pivotal to our further analysis. 

 

Subject to the outcomes of these tests, the implied restrictions accepted are imposed on 

the six economies.  We can then make use of the restricted parameter estimates of equation 

(10-13) to recover the economy-specific USPTO patent application augmentation rate 

parameters, 𝑐𝑈𝑆𝑖’s, for all six economies.18  However, the recovery of the economy-specific 

USPTO patent application augmentation level parameters, 𝐴𝐴𝑈𝑆𝑖’s, requires the use of the non-

first-differenced equation (10-10).  From equations (10-10) and (10-11), we have: 

ln 𝑌𝐴𝑈𝑆𝑖𝑡 − (𝛼𝐾 + B𝐾𝐾ln𝐴𝐾𝑖) ln𝐾𝑖𝑡 − 𝑐𝑈𝑆𝑖
∗ t − B𝐾𝐾 Kic  ln𝐾𝑖𝑡.t −

1

2
B𝐾𝐾(ln𝐾𝑖𝑡)

2  −
1

2
B𝐾𝐾

2

Kic t
2

 

            = 𝐴𝐴𝑈𝑆𝑖
∗ , 

 = −ln𝐴𝐴𝑈𝑆𝑖+ ln𝐴0+𝛼𝐾ln𝐴𝐾𝑖+
1

2
B𝐾𝐾(ln𝐴𝐾𝑖)

2.  (10-14) 

Or, 

ln 𝑌𝐴𝑈𝑆𝑖𝑡 − (𝛼𝐾 + B𝐾𝐾ln𝐴𝐾𝑖) ln𝐾𝑖𝑡 − 𝑐𝑈𝑆𝑖
∗ t − B𝐾𝐾 Kic  ln𝐾𝑖𝑡.t −

1

2
B𝐾𝐾(ln𝐾𝑖𝑡)

2 

 −
1

2
B𝐾𝐾

2

Kic t
2 −𝛼𝐾ln𝐴𝐾𝑖 −

1

2
B𝐾𝐾(ln𝐴𝐾𝑖)

2 

= −ln𝐴𝐴𝑈𝑆𝑖 +  ln𝐴0.  (10-15) 

Equation (10-15) may be used to generate estimates for the 𝐴𝐴𝑈𝑆𝑖 ’s by substituting the 

estimated values of the parameters on the left-hand-side and then running a regression with 

only economy-specific constant terms on the right-hand-side.19 

                                                 
18 On the assumption that B𝐾𝐾 is not equal to zero. 
19 We should bear in mind that 𝐴𝐴𝑈𝑆𝑖  = 1 for the numeraire economy. 
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If B𝐾𝐾 = 0, then equation (10-10) reduces to: 

 

ln 𝑌𝐴𝑈𝑆𝑖𝑡 = 𝐴𝐴𝑈𝑆𝑖
∗ + 𝑐𝑈𝑆𝑖

∗ t + 𝛼𝐾 ln 𝐾𝑖𝑡, 

= (−ln𝐴𝐴𝑈𝑆𝑖+ ln𝐴0+𝛼𝐾ln𝐴𝐾𝑖) + (−𝑐𝑈𝑆𝑖 + 𝛼𝐾 Kic )t + 𝛼𝐾 ln 𝐾𝑖𝑡,  (10-16) 

in which case it is clearly not possible to separately identify the level and the rate parameters 

of the USPTO patent application and the real R&D capital augmentation factors for each 

economy.  And our first-differenced estimating equation (10-13) reduces to: 

ln𝑌𝐴𝑈𝑆𝑖𝑡 − ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) = 𝑐𝑈𝑆𝑖
∗ + 𝛼𝐾(ln𝐾𝑖𝑡 − ln𝐾𝑖(𝑡−1)),  (10-17) 

from which 𝑐𝑈𝑆𝑖
∗  (= −𝑐𝑈𝑆𝑖 + 𝛼𝐾𝑐𝐾𝑖) can be estimated. 

 

A Model for USPTO Patent Grants 

  

Next, we derive a model for USPTO patent grants.  In Chart 10-2, the natural logarithm 

of the annual number of USPTO patent grants is plotted against the natural logarithm of the 

annual number of USPTO patent applications, lagged one year, for all six economies.  Chart 

10-2 also provides prima facie evidence that there is a stable and positive relationship between 

the annual number of USPTO patent grants and the annual number of USPTO applications, 

lagged one year, across economies and over time. 
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Chart 10-2: The Natural Logarithm of the Annual Number of USPTO Patent Grants versus 

the Natural Logarithm of the Annual Number of USPTO Patent Applications, Lagged 1 Year 

 

Source: Authors’ calculations.  Data on the numbers of USPTO patent applications and grants are from Table A5-

1 and Table A5-2 respectively. 

 

We begin with the assumption that the number of USPTO patent grants awarded to the 

ith economy in year t, 𝑌𝐺𝑈𝑆𝑖𝑡  , may be expressed as a function of 𝑌𝐴𝑈𝑆𝑖(𝑡−1), the number of 

USPTO patent applications from the ith economy in year (t-1).  Thus, 

𝑌𝐺𝑈𝑆𝑖𝑡 = 𝐹𝑖(𝑌𝐴𝑈𝑆𝑖(𝑡−1)), (10-18) 

where 𝐹𝑖(𝐾𝑖𝑡) is the “patent application production function” that relates the annual number of 

USPTO patent grants to the annual number of USPTO patent applications in the previous year.  

Moreover, we assume that there also exist economy-specific and time-varying transformations 

such that 𝑌𝐺𝑈𝑆𝑖𝑡, the measured annual number of USPTO patent grants, may be converted into 

an “efficiency-equivalent” or “quality-equivalent” annual number of USPTO patent grants, 

𝑌𝐺𝑈𝑆𝑖𝑡
∗

 
, that is comparable across economies.  More specifically, 

𝑌𝐺𝑈𝑆𝑖𝑡
∗

 
= 𝐴𝐺𝑈𝑆𝑖(t) 𝑌𝐺𝑈𝑆𝑖𝑡 ,  (10-19) 

where 𝐴𝐺𝑈𝑆𝑖(t) is the patent grant augmentation factor of the ith economy.  𝐴𝐺𝑈𝑆𝑖(t) is assumed 

to take the constant exponential form, so that: 

𝑌𝐺𝑈𝑆𝑖𝑡
∗  = 𝐴𝐺𝑈𝑆𝑖exp(𝑐𝐺𝑈𝑆𝑖t) 𝑌𝐺𝑈𝑆𝑖𝑡.  (10-20) 
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We already have, from equation (10-3) above, the conversion factor between the measured 

number of USPTO patent applications and the “efficiency-equivalent” number of USPTO 

patent applications: 

𝑌𝐴𝑈𝑆𝑖𝑡
∗   = 𝐴𝐴𝑈𝑆𝑖exp(𝑐𝑈𝑆𝑖t) 𝑌𝐴𝑈𝑆𝑖𝑡 .  (10-3) 

As the “efficiency -equivalent” numbers of both USPTO patent grants and patent applications 

are available, we assume that there exists a common USPTO patent grant production function 

linking the “efficiency-equivalent” numbers of patent grants and patent applications, lagged 

one year, for all six economies: 

𝑌𝐺𝑈𝑆𝑖𝑡
∗

 
= F(𝑌𝐴𝑈𝑆𝑖(𝑡−1)

∗ ).  (10-21) 

 

In our empirical implementation, it is assumed that the function F(.) in equation (10-

21) also takes the transcendental logarithmic form, so that: 

ln𝑌𝐺𝑈𝑆𝑖𝑡
∗

 
 = ln𝐺𝑈𝑆0+𝛼𝐺𝑈𝑆𝐴ln𝑌𝐴𝑈𝑆𝑖(𝑡−1)

∗  +
1

2
B𝐺𝑈𝑆𝐾𝐾(ln𝑌𝐴𝑈𝑆𝑖(𝑡−1)

∗ )2.  (10-22) 

Substituting equations (10-20) and (10-3) into equation (10-22), we obtain: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 = −ln𝐴𝐺𝑈𝑆𝑖 − 𝑐𝐺𝑈𝑆𝑖t + ln𝐺𝑈𝑆0+𝛼𝐺𝑈𝑆𝐴(ln𝐴𝐴𝑈𝑆𝑖+𝑐𝑈𝑆𝑖(t-1) + ln𝑌𝐴𝑈𝑆𝑖(𝑡−1))  

        + 
1

2
B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖+𝑐𝑈𝑆𝑖(t-1) + ln𝑌𝐴𝑈𝑆𝑖(𝑡−1))

2             (10-23) 

     = (−ln𝐴𝐺𝑈𝑆𝑖 + ln𝐺𝑈𝑆0+𝛼𝐺𝑈𝑆𝐴(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)+
1

2
B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)

2) 

        + (𝛼𝐺𝑈𝑆𝐴+B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖))ln𝑌𝐴𝑈𝑆𝑖(𝑡−1) 

                    + (−𝑐𝐺𝑈𝑆𝑖+ (𝛼𝐺𝑈𝑆𝐴+B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖))𝑐𝑈𝑆𝑖)t + B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖 ln𝑌𝐴𝑈𝑆𝑖(𝑡−1).t 

+
1

2
B𝐺𝑈𝑆𝐾𝐾(ln𝑌𝐴𝑈𝑆𝑖(𝑡−1))

2 +
1

2
B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖

2 t
2

.  (10-24) 

Equation (10-24) may be simplified into: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 = 𝐴𝐺𝑈𝑆𝑖
∗ + 𝑐𝐺𝑈𝑆𝑖

∗ t + (𝛼𝐺𝑈𝑆𝐴 + B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖))ln𝑌𝐴𝑈𝑆𝑖(𝑡−1) 

+B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖ln𝑌𝐴𝑈𝑆𝑖(𝑡−1).t +
1

2
B𝐺𝑈𝑆𝐾𝐾(ln𝑌𝐴𝑈𝑆𝑖(𝑡−1))

2 + 
1

2
B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖

2 t
2

, (10-25) 

where 

𝐴𝐺𝑈𝑆𝑖
∗  ≡ (−ln𝐴𝐺𝑈𝑆𝑖+ ln𝐺𝑈𝑆0+𝛼𝐺𝑈𝑆𝐴(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)+

1

2
B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)

2); and 

𝑐𝐺𝑈𝑆𝑖
∗ ≡ (−𝑐𝐺𝑈𝑆𝑖+ (𝛼𝐺𝑈𝑆𝐴+B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖))𝑐𝑈𝑆𝑖).  (10-26) 

As before, for one economy, 𝐴𝐺𝑈𝑆𝑖 can be chosen to be unity, and hence ln𝐴𝐺𝑈𝑆𝑖 = 0 for that 

economy.  This is equivalent to measuring all the USPTO patent grants using this economy’s 

number of USPTO patent grants at t=0 as the numeraire. 
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However, equation (10-25) should not be estimated solely on its own, because the 

annual number of USPTO patents granted to each economy also depends on the total patent 

grant rate of the USPTO, 𝑔𝑡 , which fluctuates over time.  There are two possible ways to 

measure the USPTO total patent grant rate: the first is the total number of patents granted 

divided by the total number of applications submitted, appropriately lagged, and the second is 

the total number of patents granted to non-U.S. applicants, divided by the total number of 

applications submitted by non-U.S. applicants, also appropriately lagged.  This variable 

controls for the changes in the behavior and practices, if any, of the USPTO over time.  In 

Chapter 5, we have found that the USPTO grant rate fluctuates significantly over time, thus 

affecting the number of patent grants awarded to the applicants independently of their numbers 

of patent applications (see Chart 5-10).  However, Chart 5-11, which presents the same 

intertemporal fluctuations in the USPTO grant rates, also shows that there is virtually no 

difference between the two alternative measures of the USPTO total patent grant rate since 

1977.  We shall therefore use only the total success rate for all economies in our empirical 

analysis.  The model of USPTO patent grants in equation (10-25), with the addition of the 

USPTO total grant rate variable in its natural logarithmic form, ln𝑔𝑡, is jointly estimated for 

all six economies in our study.  Thus, 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 = 𝐴𝐺𝑈𝑆𝑖
∗  + 𝑐𝐺𝑈𝑆𝑖

∗ t + (𝛼𝐺𝑈𝑆𝐴 + B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)) ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) 

+ B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖 ln𝑌𝐴𝑈𝑆𝑖(𝑡−1) .t + 
1

2
B𝐺𝑈𝑆𝐾𝐾 (ln𝑌𝐴𝑈𝑆𝑖(𝑡−1))

2  + 
1

2
B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖

2 t
2

 + 𝛿𝑖 ln𝑔𝑡.

 (10-27) 

 

Equation (10-27) is then the basic estimating equation.  As before, for one economy, 

𝐴𝐺𝑈𝑆𝑖 can be chosen to be unity, and hence ln𝐴𝐺𝑈𝑆𝑖= 0.  This is equivalent to measuring all the 

USPTO patent grants using this economy’s number of USPTO patent grants at t=0 as the 

numeraire.  However, we should also note that if both the USPTO patent application and grant 

production functions are estimated for the same economy, there are potentially additional 

restrictions between the parameters of the USPTO patent application production function in 

equation (10-9) and the USPTO patent grant production function in equation (10-24) as the 

parameters ln𝐴𝐴𝑈𝑆𝑖 and 𝑐𝑈𝑆𝑖 should be identical between the two equations for each economy. 

 

In order to minimise the possibility of serial correlation of the stochastic disturbance 

terms, equation (10-27) is estimated in its first-differenced form.  Lagging equation (10-27) by 

one period, we have: 
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ln 𝑌𝐺𝑈𝑆𝑖(𝑡−1) = 𝐴𝐺𝑈𝑆𝑖
∗ + 𝑐𝐺𝑈𝑆𝑖

∗ (t − 1) + (𝛼𝐺𝑈𝑆𝐴 + B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)) ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2) 

+ B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2) . (t-1) +
1

2
B𝐺𝑈𝑆𝐾𝐾(ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2))

2+
1

2
B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖

2 (t-1)
2

 

+ 𝛿𝑖  ln𝑔(𝑡−1).  (10-28) 

Subtracting equation (10-28) from equation (10-27), we obtain: 

ln 𝑌 𝐺𝑈𝑆𝑖𝑡 − ln𝑌 𝐺𝑈𝑆𝑖(𝑡−1) 

= 𝑐𝐺𝑈𝑆𝑖
∗ + (𝛼𝐺𝑈𝑆𝐴 + B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖))(ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) − ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2)) 

                +B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖(ln𝑌𝐴𝑈𝑆𝑖(𝑡−1). t − ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2) . (t-1)) 

+ 
1

2
B𝐺𝑈𝑆𝐾𝐾((ln𝑌𝐴𝑈𝑆𝑖(𝑡−1))

2 −(ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2))
2) + B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖

2 t 

− 
1

2
B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖

2  + 𝛿𝑖 (ln𝑔𝑡 − ln𝑔(𝑡−1)) 

 = 𝑐𝐺𝑈𝑆𝑖
∗∗ + (𝛼𝐺𝑈𝑆𝐴 + B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖))(ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) − ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2)) 

+B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖(ln𝑌𝐴𝑈𝑆𝑖(𝑡−1). t − ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2) . (t-1)) 

+ 
1

2
B𝐺𝑈𝑆𝐾𝐾((ln𝑌𝐴𝑈𝑆𝑖(𝑡−1))

2 −(ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2))
2)  

+ B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖
2  t + 𝛿𝑖 (ln𝑔𝑡 − ln𝑔(𝑡−1)),  (10-29) 

where 𝑐𝐺𝑈𝑆𝑖
∗∗  ≡ (−𝑐𝐺𝑈𝑆𝑖 + (𝛼𝐺𝑈𝑆𝐴 + B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖))𝑐𝑈𝑆𝑖) − 

1

2
B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖

2 .  

Equation (10-29) is then the actual estimating equation for the model of USPTO patent grants. 

 

Again, the first step is to test jointly the nonlinear restrictions implied by the “First 

Necessary Condition” of the meta-production function model, followed by a test for the 

“Equality” restrictions across the six economies, conditional on the “First Necessary 

Condition”.  If both tests are accepted, the validity of the meta-production function model is 

confirmed.  We then proceed to test whether B𝐺𝑈𝑆𝐾𝐾 = 0.  B𝐺𝑈𝑆𝐾𝐾= 0 implies that the elasticity 

of the annual number of USPTO patent grants with respect to the annual number of USPTO 

patent applications is a constant that is identical across economies.  There is a question of how 

many restrictions are implied by the hypothesis of B𝐺𝑈𝑆𝐾𝐾= 0.  In principle, it is only a 

restriction on a single parameter; however, assuming the validity of the meta-production 

function model, with 6 economies, there are 25 independent parameters in equation (10-29).  

With the restriction of B𝐺𝑈𝑆𝐾𝐾= 0, there are only 13 independent parameters left to be estimated, 

so that the effective number of restrictions is actually 12 (25-13).  We shall test this hypothesis 

as if it consists of 12 restrictions. 
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Conditional on the validity of the meta-production function model, we also test the 

hypothesis of identical 𝛿𝑖’s across economies.  This hypothesis implies that fluctuations in the 

USPTO total grant rate affect the degree of success of the patent applications of all economies 

equally. 

 

If the hypothesis of B𝐺𝑈𝑆𝐾𝐾 = 0 is rejected, we proceed to test the following specific 

hypotheses on the other parameters: (1) identical 𝑐𝑈𝑆𝑖’s across economies; (2) identical 𝐴𝐴𝑈𝑆𝑖’s 

across economies (implying ln𝐴𝐴𝑈𝑆𝑖=0, all i, since 𝐴𝐴𝑈𝑆𝑖 =1 for the numeraire economy); and 

(3) identical 𝑐𝐺𝑈𝑆𝑖’s across economies.  However, if the hypothesis of B𝐺𝑈𝑆𝐾𝐾 = 0 cannot be 

rejected, the USPTO patent application and patent grant augmentation factors may not be 

identifiable, and these additional hypotheses (1) through (3) cannot be tested.  Thus, the 

hypothesis of B𝐺𝑈𝑆𝐾𝐾 = 0 is also pivotal to our further analysis. 

 

Subject to the outcomes of these tests, the implied restrictions accepted are imposed on 

the six economies.  We can then make use of the restricted parameter estimates of equation 

(10-29) to recover the economy-specific USPTO patent grant augmentation rate parameters, 

𝑐𝐺𝑈𝑆𝑖’s, for all the economies.20  However, the recovery of the economy-specific USPTO patent 

grant augmentation level parameters, 𝐴𝐺𝑈𝑆𝑖 ’s, requires the use of the non-first-differenced 

equation (10-27).  From equations (10-27) and (10-26), we have: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 − 𝑐𝐺𝑈𝑆𝑖
∗ t − (𝛼𝐺𝑈𝑆𝐴 + B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)) ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) 

− B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖ln𝑌𝐴𝑈𝑆𝑖(𝑡−1).t − 
1

2
B𝐺𝑈𝑆𝐾𝐾(ln𝑌𝐴𝑈𝑆𝑖(𝑡−1))

2 − 
1

2
B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖

2 t
2

 − 𝛿𝑖 ln𝑔𝑡.

 = 𝐴𝐺𝑈𝑆𝑖
∗  

 = −ln𝐴𝐺𝑈𝑆𝑖+ ln𝐺𝑈𝑆0+𝛼𝐺𝑈𝑆𝐴(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)+
1

2
B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)

2. 

 (10-30) 

Or, 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 − 𝑐𝐺𝑈𝑆𝑖
∗ t − (𝛼𝐺𝑈𝑆𝐴 + B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)) ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) 

− B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖ln𝑌𝐴𝑈𝑆𝑖(𝑡−1).t − 
1

2
B𝐺𝑈𝑆𝐾𝐾(ln𝑌𝐴𝑈𝑆𝑖(𝑡−1))

2 − 
1

2
B𝐺𝑈𝑆𝐾𝐾𝑐𝑈𝑆𝑖

2 t
2

 − 𝛿𝑖 ln𝑔𝑡 

−𝛼𝐺𝑈𝑆𝐴(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖) −
1

2
B𝐺𝑈𝑆𝐾𝐾(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)

2 

= −ln𝐴𝐺𝑈𝑆𝑖 +  ln𝐺𝑈𝑆0.  (10-31) 

                                                 
20 On the assumption that B𝐺𝑈𝑆𝐾𝐾  is not equal to zero. 
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Equation (10-31) may be used to generate estimates for the 𝐴𝐺𝑈𝑆𝑖 ’s by substituting the 

estimated values of the parameters on the left-hand-side and then running a regression with 

only economy-specific constant terms on the right-hand-side.21 

 

Finally, it is also worth noting that if B𝐺𝑈𝑆𝐾𝐾 = 0, then equation (10-27) reduces to: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 = 𝐴𝐺𝑈𝑆𝑖
∗  + 𝑐𝐺𝑈𝑆𝑖

∗  t + 𝛼𝐺𝑈𝑆𝐴 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1)+ 𝛿𝑖 ln𝑔𝑡, (10-32) 

= (−ln𝐴𝐺𝑈𝑆𝑖 +  ln𝐺𝑈𝑆0 + 𝛼𝐺𝑈𝑆𝐴(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)) + (−𝑐𝐺𝑈𝑆𝑖+𝛼𝐺𝑈𝑆𝐴𝑐𝑈𝑆𝑖)t  

+ 𝛼𝐺𝑈𝑆𝐴 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1)+ 𝛿𝑖 ln𝑔𝑡. (10-33) 

Equation (10-33) shows clearly that the level and rate parameters of the patent application and 

patent grant augmentation factors cannot be uniquely identified.  Our first-differenced 

estimating equation (10-29) reduces to: 

ln 𝑌 𝐺𝑈𝑆𝑖𝑡 − ln𝑌 𝐺𝑈𝑆𝑖(𝑡−1) = 𝑐𝐺𝑈𝑆𝑖
∗ + 𝛼𝐺𝑈𝑆𝐴(ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) − ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2)) 

+ 𝛿𝑖  (ln𝑔𝑡 − ln𝑔(𝑡−1)).  (10-34) 

Equation (10-33) shows clearly that 𝐴𝐺𝑈𝑆𝑖 , 𝐴𝐴𝑈𝑆𝑖 , 𝑐𝐺𝑈𝑆𝑖  and 𝑐𝑈𝑆𝑖  cannot be separately 

identified if B𝐺𝑈𝑆𝐾𝐾 = 0.  Thus, it is also no longer possible to separately identify the USPTO 

patent application and patent grant augmentation factors for each economy.  However, equation 

(10-34) can be used to generate estimates of the 𝑐𝐺𝑈𝑆𝑖
∗ ’s and to test whether they are equal 

across economies.  Once estimates of the 𝑐𝐺𝑈𝑆𝑖
∗ ’s are available, equation (10-32) can be used to 

generate estimates of the 𝐴𝐺𝑈𝑆𝑖
∗ ’s and to test whether they are equal across economies. 

 

The Empirical Implementation 

  

In the empirical implementation, the U.S. is always chosen to be the numeraire 

economy, so that the numbers of USPTO patent applications and grants and the quantities of 

the real R&D capital stocks are all measured relative to the U.S. quantities at t=0.  Thus, for 

the U.S., 𝐴𝐴𝑈𝑆𝑖  = 𝐴𝐺𝑈𝑆𝑖 = 𝐴𝐾𝑖 = 1; and hence ln𝐴𝐴𝑈𝑆𝑖  = ln𝐴𝐺𝑈𝑆𝑖 = ln𝐴𝐾𝑖 = 0. 

 

First, we must test whether the meta-production function model is suitable for the 

analysis of USPTO patent applications and patent grants.  This is done in two steps.  In step 

one, we test the nonlinear restrictions referred to as the “First Necessary Condition”.  The joint 

hypothesis that all of these nonlinear restrictions on the coefficients hold for all included 

                                                 
21 We should bear in mind that 𝐴𝐺𝑈𝑆𝑖 = 1 for the numeraire economy. 
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economies is directly tested for both USPTO patent applications and patent grants.22  If the test 

for the “First Necessary Condition” is accepted, then we proceed to step two, to test the 

hypothesis of “Equality” of the B𝐾𝐾 ’s (and similarly that of the B𝐺𝑈𝑆𝐾𝐾 ’s), across all 

economies, conditional on the “First Necessary Condition”, separately for patent applications 

and patent grants.  If this “Equality” hypothesis is also accepted for a model, then the validity 

of the meta-production function assumption is confirmed for that model. 

 

Subject to the acceptance of the validity of the meta-production function model, the 

hypotheses of a zero coefficient for the second-order term in the translog production functions 

(B𝐾𝐾 and B𝐺𝑈𝑆𝐾𝐾) are separately tested.  In addition, if the hypothesis of a zero second-order 

term is rejected, we also test respectively the hypotheses that the rate and level parameters of 

the real R&D capital augmentation factors, the USPTO patent application augmentation factors, 

and the USPTO patent grant augmentation factors are identical across economies.23  For the 

model of USPTO patent grants, we also test the equality of the 𝛿𝑖’s, the effects of the USPTO 

total grant rate, across economies. 

  

For the hypotheses testing, we set an overall level of significance of 0.1 (10%) each for 

the tests of the USPTO patent application and patent grant models, which means that the 

probability of our falsely rejecting a hypothesis when it is true is less than or equal to 10 percent.  

Because of the central importance of the meta-production function model within our analysis, 

within the 10%, we assign a level of significance of 0.05 (5%) to the tests of its validity, divided 

equally between the two hypotheses necessary for its validity, the “First Necessary Condition” 

and the “Equality” restrictions.  The remaining 0.05 (5%) is allocated over specific hypotheses 

on the parameters at 0.01 (1%) each. 

 

Conditional on the validity of the meta-production function model, the first specific 

hypothesis to be tested is whether the second-order coefficient of the translog production 

function is zero.  This is an important hypothesis, because, depending on its outcome, it will 

determine how our analysis should proceed.  We assign a level of significance of 0.01 (1%) to 

                                                 
22To carry out this joint test, we need to estimate the coefficients of all selected economies in the form of a 

pooled regression.  For the pooled regression, the data of the different economies are adjusted for 

heteroscedasticity, using the estimated standard errors of the unrestricted regression of the basic estimating 

equation of each model for each individual economy. 
23 Note that in the event of a zero coefficient for the second-order term in the translog production function (B𝐾𝐾 

or B𝐺𝑈𝑆𝐾𝐾), the parameters of the real R&D capital, patent application and patent grant augmentation factors 

cannot be separately identified, and consequently hypotheses on these parameters cannot be tested. 
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this hypothesis.  If this hypothesis cannot be rejected, then it is not possible to identify the 

parameters of the augmentation factors and we shall have to terminate the sequence of tests.  If 

this hypothesis is rejected, then for the patent applications model, we proceed to test the 

following additional hypotheses: (1) identical capital augmentation rates; (2) identical capital 

augmentation levels; and (3) identical patent application augmentation rates.  Each of these 

hypotheses is tested, conditional on the validity of the meta-production function model.  For 

the model of USPTO patent grants, we proceed to test the following additional hypotheses: (1) 

identical patent application augmentation rates; (2) identical patent application augmentation 

levels; and (3) identical patent grant augmentation rates.  In addition, we also test the hypothesis 

of the equality of the coefficients of the USPTO total grant rate across economies.  The levels 

of significance for each of the specific tests on the parameters are set at a uniform  0.01 (1%) 

each.  We proceed to estimate the parameters and separately test the hypotheses for each of the 

two models in succession below. 

 

The Model for USPTO Patent Applications 

 

First, we estimate the model for USPTO patent applications in equation (10-13) for the 

six economies.  We begin our analysis by testing the implied nonlinear restrictions of the joint 

hypothesis of the “First Necessary Condition” for the six economies.  There are six restrictions, 

one per economy.  This joint hypothesis cannot be rejected at a level of significance of 0.025.  

(We also test this hypothesis for each of the six economies individually.  It turns out that none 

of these individual tests of the “First Necessary Condition” can be rejected at any reasonable 

level of significance.  The detailed results are presented in Appendix Table A10-2.)  

Conditional on the acceptance of the joint test of “First Necessary Condition”, the hypothesis 

of “Equality”, that is, identical B𝐾𝐾’s across all economies, is also tested.  With six economies, 

there are five restrictions.  The hypothesis of “Equality” also cannot be rejected at a level of 

significance of 0.025, thus confirming the validity of the meta-production function model for 

USPTO patent applications.  The test results are reported in Table 10-1. 

 

Given the validity of the meta-production function model for USPTO patent 

applications, we proceed to test whether B𝐾𝐾=0, conditional on the meta-production function 

model.  The hypothesis of B𝐾𝐾= 0, with its implied 12 restrictions, cannot be rejected at the 

0.01 level of significance.  But B𝐾𝐾=0 implies that the level and rate parameters of the USPTO 
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patent application and the real R&D capital stock augmentation factors, 𝐴𝐴𝑈𝑆𝑖, 𝑐𝑈𝑆𝑖, 𝐴𝐾𝑖, and 

𝑐𝐾𝑖 cannot be uniquely identified and therefore hypotheses about them cannot be tested. 

 

With B𝐾𝐾= 0, we proceed to estimate equation (10-17): 

ln𝑌𝐴𝑈𝑆𝑖𝑡 − ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) = 𝑐𝑈𝑆𝑖
∗ + 𝛼𝐾(ln𝐾𝑖𝑡 − ln𝐾𝑖(𝑡−1)),   (10-17) 

where 𝑐𝑈𝑆𝑖
∗   ≡ (−𝑐𝑈𝑆𝑖 + 𝛼𝐾 Kic ) and test whether the 𝑐𝑈𝑆𝑖

∗ ’s are equal across economies,24 and 

if so, whether they are equal to zero.  At a level of significance of 0.01, the hypothesis of 

equality of the 𝑐𝑈𝑆𝑖
∗ ’s cannot be rejected.  In addition, the hypothesis of a common zero 𝑐𝑈𝑆

∗  for 

all six economies also cannot be rejected at a level of significance of 0.01.  With the 𝑐𝑈𝑆𝑖
∗ ’s 

being set equal to zero, we can estimate the 𝐴𝐴𝑈𝑆𝑖
∗ ’s from a re-arranged version of equation (10-

16): 

ln 𝑌𝐴𝑈𝑆𝑖𝑡 − 𝑐𝑈𝑆
∗ t − 𝛼𝐾 ln𝐾𝑖𝑡 = ln 𝑌𝐴𝑈𝑆𝑖𝑡 − 𝛼𝐾 ln 𝐾𝑖𝑡 = 𝐴𝐴𝑈𝑆𝑖

∗ , (10-35) 

into the left-hand-side of which the known estimated values of the parameter 𝛼𝐾 is plugged.  

We also test whether the 𝐴𝐴𝑈𝑆𝑖
∗ ’s are equal across economies,25 and if so, whether they are equal 

to zero.  However, we note that 𝐴𝐴𝑈𝑆𝑖
∗  ≡ (−ln𝐴𝐴𝑈𝑆𝑖+ ln𝐴0+𝛼𝐾ln𝐴𝐾𝑖), which means that neither 

𝐴𝐴𝑈𝑆𝑖 nor 𝐴𝐾𝑖 can be uniquely identified.  At a level of significance of 0.01, the hypothesis of 

equality of the 𝐴𝐴𝑈𝑆𝑖
∗ ’s can be rejected.  These test results are also reported in Table 10-1. 

 

Table 10-1: Tests of Hypotheses, USPTO Patent Applications 

 

Notes: 𝑐𝑈𝑆𝑖
∗   ≡ (−𝑐𝑈𝑆𝑖 + 𝛼𝐾 Kic ); 𝐴𝐴𝑈𝑆𝑖

∗  ≡  (−ln𝐴𝐴𝑈𝑆𝑖 +  ln𝐴0 + 𝛼𝐾ln𝐴𝐾𝑖). 

                                                 
24 Note that equality of the 𝑐𝑈𝑆𝑖

∗ ’s does not imply the equality of the 𝑐𝑈𝑆𝑖’s. 
25 Similarly, the equality of the 𝐴𝐴𝑈𝑆𝑖

∗ ’s does not imply the equality of the 𝐴𝑈𝑆𝑖’s. 

Maintained Hypothesis Tested Hypothesis
Level of

Significance
Critical Value Test Statistic p-Value Accept/Reject

Unconstrained
First Necessary

Condition
0.025 2.4593 1.6230 0.1412 Accept

First Necessarty Condition Equality of BKK's 0.025 2.6165 1.7759 0.1182 Accept

Meta-Production Function BKK = 0 0.01 2.2537 2.1972 0.0123 Accept

Meta-Production Function with

BKK=0
      Equality of 0.01 3.0851 1.3055 0.2618 Accept

Meta-Production Function with

BKK=0 and identical C
*

USi's
0.01 6.7273 0.5728 0.4498 Accept

Meta-Production Function with

BKK=0 and C
*

US=0
     Equality of A

*
AUSi 0.01 3.0849 117.3548 0.0000 Reject

    
∗ 's = 0

    
∗ 's

    
∗ 's

   
∗ = 0

     
∗ 's
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We impose all the restrictions implied by the meta-production function model and all 

the accepted hypotheses and re-estimate all the parameters for the model of USPTO patent 

applications.  The results are presented in Table 10-2. 

 

Table 10-2: Estimated Parameters of the USPTO Patent Application Production Functions 

 

  

Table 10-2 shows that for a given quantity of real R&D capital stock, South Korea has 

the highest annual number of USPTO patent applications, followed by Japan; and Mainland, 

China has the lowest annual number, other things being equal.  This may be due, in part, to the 

significantly lower USPTO patent application rate of Mainland China. 

 

The Model for USPTO Patent Grants 

 

For the model of USPTO patent grants, we estimate equation (10-29) for all six 

economies.  Again, we first test the “First Necessary Condition” jointly for all the included 

economies.  This hypothesis cannot be rejected at a level of significance of 0.025.  (We also 

test this hypothesis for each of the six economies separately.  The p-values of these tests 

indicate that this hypothesis cannot be rejected for all six economies at any reasonable level of 

significance.  The detailed results are presented in Appendix Table A10-3.)  Conditional on the  

joint hypothesis of the “First Necessary Condition”, the hypothesis of “Equality”, that is, 

identical B𝐺US𝐾𝐾’s across the six economies, is tested.  This hypothesis also cannot be rejected 

at a level of significance of 0.025, confirming the validity of the meta-production function 

model for USPTO patent grants.  The test results are reported in Table 10-3. 

 Parameter Estimate Standard Error t-statistic P-value

0.000 N.A. N.A. N.A.

1.132 0.087 13.004 [.000]

     France 2.217 0.067 33.048 [.000]

      Germany 2.717 0.067 40.500 [.000]

      Japan 3.156 0.067 47.049 [.000]

      United States 2.971 0.076 38.945 [.000]

      Mainland, China 1.028 0.083 12.449 [.000]

      South Korea 3.325 0.074 45.156 [.000]

   
∗

     
∗ 's
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Given the validity of the meta-production function model for USPTO patent grants, we 

proceed to test the hypothesis that B𝐺𝑈𝑆𝐾𝐾=0.26   The hypothesis of B𝐺𝑈𝑆𝐾𝐾= 0 cannot be 

rejected at a level of significance of 0.01.  These results are reported in Table 10-3. 

 

Subject to the validity of the meta-production function model, we also test whether the 

𝛿𝑖’s are identical across economies.  The equality of the 𝛿𝑖’s across economies implies that the 

effects of changes in the USPTO total grant rates affect the annual numbers of patent grants of 

all economies equally.  This hypothesis cannot be rejected at a level of significance of 0.01. 

 

With B𝐺𝑈𝑆𝐾𝐾  = 0, it is not possible to identify the level and rate parameters of the 

USPTO patent grant and patent application augmentation factors, and hence to test hypotheses 

on them.  We therefore proceed to estimate equation (10-34): 

ln 𝑌 𝐺𝑈𝑆𝑖𝑡 − ln𝑌 𝐺𝑈𝑆𝑖(𝑡−1) = 𝑐𝐺𝑈𝑆𝑖
∗ + 𝛼𝐺𝑈𝑆𝐴(ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) − ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2)) 

+ 𝛿𝑖   (ln𝑔𝑡 − ln𝑔(𝑡−1)),  (10-34) 

where 𝑐𝐺𝑈𝑆𝑖
∗  ≡ (−𝑐𝐺𝑈𝑆𝑖 + 𝛼𝐺𝑈𝑆𝐴𝑐𝑈𝑆𝑖).  We test the hypothesis of the equality of the 𝑐𝐺𝑈𝑆𝑖

∗ ’s 

across economies in equation (10-34),27 and if so, whether they are equal to zero.  At a level of 

significance of 0.01, the hypothesis of equality of the 𝑐𝐺𝑈𝑆𝑖
∗ ’s cannot be rejected.  However, the 

hypothesis of a common zero 𝑐𝐺𝑈𝑆
∗  for all six economies can be rejected at a level of 

significance of 0.01.  With the estimated 𝑐𝐺𝑈𝑆
∗ , we estimate the 𝐴𝐺𝑈𝑆𝑖

∗ ’s from a re-arranged 

version of equation (10-32), in which we have set 𝛿𝑖 = 𝛿 in accordance with our test results: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 − 𝑐𝐺𝑈𝑆
∗  t − 𝛼𝐺𝑈𝑆𝐴 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) − 𝛿  ln𝑔𝑡 = 𝐴𝐺𝑈𝑆𝑖

∗ . (10-36) 

We plug into the left-hand-side of equation (10-36) the known estimated values of the 

parameters, 𝑐𝐺𝑈𝑆
∗ , 𝛼𝐺𝑈𝑆𝐴 and 𝛿, and run the regression on economy-specific constant terms.  

We also test whether the 𝐴𝐺𝑈𝑆𝑖
∗ ’s are equal across economies,28 and if so, whether they are 

equal to zero.  At a level of significance of 0.01, the hypothesis of equality of the 𝐴𝐺𝑈𝑆𝑖
∗ ’s can 

be rejected.  These test results are also reported in Table 10-3. 

 

  

                                                 
26 We note that if B𝐺𝑈𝑆𝐾𝐾  = 0, the USPTO grant and application augmentation factors are not identifiable, and 

hypotheses on their level and rate parameters cannot be tested. 
27 Note that equality of the 𝑐𝐺𝑈𝑆𝑖

∗ ’s does not imply the equality of the 𝑐𝐺𝑈𝑆𝑖’s. 
28 Similarly, the equality of the 𝐴𝐺𝑈𝑆𝑖

∗ ’s does not imply the equality of the 𝐴𝐺𝑈𝑆𝑖’s. 
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Table 10-3: Tests of Hypotheses, USPTO Patent Grants 

 

Notes: 𝑐𝐺𝑈𝑆𝑖
∗  ≡ (−𝑐𝐺𝑈𝑆𝑖 + 𝛼𝐺𝑈𝑆𝐴𝑐𝑈𝑆𝑖); 𝐴𝐺𝑈𝑆𝑖

∗  ≡  (−ln𝐴𝐺𝑈𝑆𝑖 +  ln𝐺𝑈𝑆0 + 𝛼𝐺𝑈𝑆𝐴(ln𝐴𝐴𝑈𝑆𝑖 − 𝑐𝑈𝑆𝑖)).  

 

The final estimation is done with all the restrictions on the parameters implied by the 

meta-production function model and the accepted hypotheses imposed.  The results are 

presented in Table 10-4. 

 

Table 10-4: Estimated Parameters of the USPTO Patent Grant Production Functions 

 

 

Table 10-4 shows that for a given annual number of USPTO patent applications, lagged 

one year, the United States has the highest annual number of USPTO patent grants, followed 

Maintained Hypothesis Tested Hypothesis
Level of

Significance
Critical Value Test Statistic p-Value Accept/Reject

Unconstrained First Necessary Condition 0.025 2.4606 0.2816 0.9453 Accept

First Necessarty Condition Equality of BGUSKK's 0.025 2.6177 1.4033 0.2236 Accept

Meta-Production Function BGUSKK=0 0.01 2.2554 1.0567 0.3976 Accept

Meta-Production Function Equality of δi's 0.01 3.0900 0.1513 0.9795 Accept

Meta-Production Function with

BGUSKK=0
Equality of C

*
GUSi's 0.01 3.0867 2.2195 0.0527 Accept

Meta-Production Function with

BGUSKK=0, and identical

C
*

GUSi's

0.01 6.7293 15.2893 0.0001 Reject

Meta-Production Function with

BGUSKK=0, identical δi's and

identical C
*

GUSi's

 Equality of A
*

GUSi's 0.01 3.0849 112.2517 0.0000 Reject

     
∗ 's

     
∗ 's

     
∗ 's

     
∗ 's

     
∗ 's = 0

 Parameter Estimate Standard Error t-statistic P-value

0.032 0.008 3.950 [.000]

0.402 0.087 4.621 [.000]

1.196 0.141 8.496 [.000]

      France -1.509 0.105 -14.368 [.000]

      Germany -0.936 0.105 -8.910 [.000]

      Japan -0.504 0.105 -4.798 [.000]

      United States 0.189 0.119 1.580 [.114]

      Mainland, China -3.223 0.129 -24.943 [.000]

      South Korea -2.516 0.115 -21.832 [.000]

    
∗

     

    

     
∗ 's



51 
 

by Japan; and Mainland, China has the lowest, other things being equal.  This may be due, in 

part, to the significantly lower USPTO patent application rate of Mainland, China. 

 

Summary of the Estimation Results 

 

From equation (10-33), the annual number of USPTO patent grants of the ith economy 

in year t is given by: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 = 𝐴𝐺𝑈𝑆𝑖
∗ + 𝑐𝐺𝑈𝑆

∗  t + 𝛼𝐺𝑈𝑆𝐴 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) + 𝛿  ln𝑔𝑡. (10-37) 

From equation (10-16), the annual number of USPTO applications of the ith economy in year 

t is given by: 

ln𝑌𝐴𝑈𝑆𝑖𝑡 =𝐴𝐴𝑈𝑆𝑖
∗ + 𝛼𝐾 ln𝐾𝑖𝑡.  (10-38) 

Finally, by combining equations (10-37) and (10-38), we have: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 = 𝐴𝐺𝑈𝑆𝑖
∗ + 𝑐𝐺𝑈𝑆

∗  t +  𝛿  ln𝑔𝑡 + 𝛼𝐺𝑈𝑆𝐴 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) 

     = 𝐴𝐺𝑈𝑆𝑖
∗ + 𝑐𝐺𝑈𝑆

∗  t +  𝛿  ln𝑔𝑡 + 𝛼𝐺𝑈𝑆𝐴(𝐴𝐴𝑈𝑆𝑖
∗ + 𝛼𝐾 ln𝐾𝑖(𝑡−1)) 

     = 𝐴𝐺𝑈𝑆𝑖
∗ + 𝛼𝐺𝑈𝑆𝐴𝐴𝐴𝑈𝑆𝑖

∗ + 𝑐𝐺𝑈𝑆
∗  t +  𝛿  ln𝑔𝑡 + 𝛼𝐺𝑈𝑆𝐴𝛼𝐾 ln𝐾𝑖(𝑡−1).   (10-39) 

It is interesting to compare the estimated values of (𝐴𝐺𝑈𝑆𝑖
∗ + 𝛼𝐺𝑈𝑆𝐴𝐴𝐴𝑈𝑆𝑖

∗ ), calculated from 

Tables 10-2 and 10-4, across the six economies.  This is done in Table 10-5: 

 

Table 10-5: Estimated Values of the Economy-Specific Constants 

in the USPTO Patent Grants Production Functions 

 

 

The last column of Table 10-5 also shows that for a given quantity of real R&D capital 

stock of the preceding year, the United States has the highest annual number of USPTO patent 

grants, followed by Japan, and Mainland, China the lowest, other things being equal.  This may 

also be due, in part, to the significantly lower USPTO patent application rate of Mainland China. 

  Economy

  France -1.509 0.402 2.217 -0.618

  Germany -0.936 0.402 2.717 0.156

  Japan -0.504 0.402 3.156 0.764

  United States 0.189 0.402 2.971 1.382

  Mainland, China -3.223 0.402 1.028 -2.810

  South Korea -2.516 0.402 3.325 -1.180

     
∗           

∗      
∗ +           

∗



52 
 

This completes our estimation of the econometric models of USPTO patent applications 

and patent grants.  We note that the final model yields statistically significant estimates of the 

parameters.  The analysis and interpretation of the empirical results will be presented in Chapter 

11 below. 
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Appendix 

Table A10-1: The Beginning and Ending Years of the Data for the Six Economies 

in Chapters 10 and 11 

 

 

Table A10-2: Economy-Specific Tests of the First Necessary Condition for the Validity 

of the Meta-Production Function Model, USPTO Patent Applications (Six Economies) 

 

 

Table A10-3: Economy-Specific Tests of the First Necessary Condition for the Validity 

of the Meta-Production Function Model, USPTO Patent Grants (Six Economies) 

 

 

  

Economy Beginning Year Ending Year

France 1967 2019

Germany 1967 2019

Japan 1967 2019

U.S. 1979 2019

Mainland, China 1985 2019

South Korea 1976 2019

Economy Test Statistic p-Value Accept/Reject

France 1.6022 0.2117 Accept

Germany 0.0492 0.8254 Accept

Japan 0.0612 0.8057 Accept

U.S. 0.7689 0.3864 Accept

Mainland, China 0.0308 0.8618 Accept

South Korea 2.5009 0.1219 Accept

Economy Test Statistic p-Value Accept/Reject

France 0.3943 0.5331 Accept

Germany 0.5151 0.4765 Accept

Japan 0.5486 0.4626 Accept

U.S. 0.0110 0.9171 Accept

Mainland, China 0.2697 0.6075 Accept

South Korea 0.3485 0.5585 Accept
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Chapter 11: The Research Findings 

The econometric analysis in Chapter 10 indicates that, at the economy level, there 

appears to be a “Law of Innovation” that is common to the six economies analysed.  Innovation, 

measured in terms of the annual numbers of United States Patent and Trademark Office 

(USPTO) patent applications and patent grants, appears to depend on the quantity of real 

investment in Research and Development (R&D) and in particular on the quantity of the 

accumulated real R&D capital stock, in a similar and statistically significant, though not 

completely identical, manner across the six economies in our study—Mainland China, France, 

Germany, Japan, South Korea, and the U.S., all economies with their numbers of domestic 

patent applications exceeding their numbers of USPTO patent applications. 

 

On the whole, the meta-production function models for the USPTO patent applications 

and patent grants fit the data of all the included economies reasonably well, except for China 

(see below).  We have not attempted to model the domestic patent application and grant 

behaviour of our selected economies because the diversity in their propensities to apply for and 

to award patents makes it virtually impossible for a single meta-production function model to 

capture it adequately. 

 

From the results of our estimation of the econometric models in Chapter 10 above, we 

can calculate the values of the elasticities of the annual number of USPTO patent applications 

with respect to the quantity of real R&D capital stock as well as the elasticities of the annual 

number of USPTO patent grants with respect to the lagged annual number of USPTO patent 

applications, and ultimately the elasticities of the annual number of USPTO patent grants with 

respect to the lagged quantity of real R&D capital stock of the individual economies.  

According to equation (10-37), the annual number of USPTO patent grants of the ith economy 

at year t, ln 𝑌𝐺𝑈𝑆𝑖𝑡, is given by: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 = 𝐴𝐺𝑈𝑆𝑖
∗ + 𝑐𝐺𝑈𝑆

∗  t + 𝛼𝐺𝑈𝑆𝐴 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) + 𝛿  ln𝑔𝑡 

                = 𝐴𝐺𝑈𝑆𝑖
∗ 29 + 0.032 t + 0.402 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) + 1.196 ln𝑔𝑡, (11-1) 

                                     (0.008)30  (0.087)                       (0.141) 

where the estimated values of the parameters and their standard errors are taken from Table 

10-4, which have incorporated all the restrictions implied by the accepted hypotheses.  

                                                 
29 The estimates of the 𝐴𝐺𝑈𝑆𝑖

∗ ’s of specific economies are presented in Table 10-4. 
30 Numbers in parentheses are estimated standard errors. 
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Differentiating equation (11-1) partially with respect to ln𝑌𝐴𝑈𝑆𝑖(𝑡−1), we obtain the elasticity 

of the annual number of USPTO patent grants with respect to the annual number of USPTO 

patent applications in the previous year of the ith economy, holding the year, t, and the USPTO 

total patent grant rate constant: 

𝜕 ln𝑌𝐺𝑈𝑆𝑖𝑡

𝜕ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1)
 =  𝛼𝐺𝑈𝑆𝐴 =  0.402. (11-2) 

Thus, all six economies have the same estimated elasticity.  Differentiating equation (11-1) 

partially with respect to time, t, we obtain the rate of growth of the annual number of USPTO 

patent grants, holding the annual number of USPTO patent applications in the previous year of 

the ith economy and the USPTO total patent grant rate constant.  The rate of growth also turns 

out to be the same for all six economies: 

𝜕 ln𝑌𝐺𝑈𝑆𝑖𝑡

𝜕t
 =  𝑐𝐺𝑈𝑆

∗  = 0.032 or 3.2%.  (11-3) 

 

The annual number of USPTO patent applications of the ith economy in year t, 

ln𝑌𝐴𝑈𝑆𝑖𝑡 , is, according to equation (10-38), given by: 

ln𝑌𝐴𝑈𝑆𝑖𝑡 = 𝐴𝐴𝑈𝑆𝑖
∗ + 𝑐𝑈𝑆

∗ t + 𝛼𝐾 ln 𝐾𝑖𝑡 

= 𝐴𝐴𝑈𝑆𝑖
∗ 31 + 1.132 ln𝐾𝑖𝑡.  (11-4) 

                   (0.087) 

Differentiating equation (11-4) partially with respect to ln𝐾𝑖𝑡, we obtain the elasticity of the 

annual number of USPTO patent applications with respect to the quantity of real R&D capital 

stock, holding t constant: 

𝜕ln𝑌𝐴𝑈𝑆𝑖𝑡 
𝜕ln𝐾𝑖𝑡

 = 𝛼𝐾 = 1.132.  (11-5) 

Thus, all six economies also have the same estimated elasticity.  Differentiating equation (11-

4) partially with respect to t, holding the quantity of real R&D capital stock constant, we obtain 

zero: 

𝜕 ln𝑌𝐴𝑈𝑆𝑖𝑡

𝜕t
 =  0.  (11-6) 

This implies that there is no autonomous growth in the annual number of USPTO applications 

without the growth of the quantity of the real R&D capital stock. 

  

It is of interest to see how well equations (11-1) and (11-4) fit the actual data.  In Chart 

11-1, the actual and fitted values of the annual numbers of USPTO patent grants of both 

                                                 
31 The estimates of the 𝐴𝑈𝑆𝑖

∗ ’s of specific economies are taken from Table 10-2. 
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Mainland China and the U.S. (from equation (11-1)) are plotted against time.  The goodness of 

fit of the annual number of USPTO patent grants of the U.S. is excellent.  However, the 

goodness of fit of the annual number of USPTO patent grants of Mainland China is quite poor.  

There is significant over-estimation before 2004 and significant under-estimation since.  We 

believe this is due to the abrupt change in the annual rate of growth of the number of USPTO 

patent grants awarded to Mainland China, from virtually zero to an average of over 26%, 

beginning in1996.  Even the addition of an economy-specific time-trend term in equation (11-

1) would not have been able to reflect this. 

 

Chart 11-1: The Actual and Fitted Values of the Annual Numbers of USPTO Patent Grants, 

Mainland China and the U.S. 

 

Source: Data on the actual values of annual numbers of USPTO patent grants are from Table5A-2 and the fitted 

values are based on authors’ calculations. 

 

In Chart 11-2, the actual and fitted values of the annual numbers of USPTO patent 

applications of both Mainland China and the U.S. (from equation (11-4)) are plotted against 

time.  The goodness of fit of the annual number of USPTO patent applications of the U.S. is 

not bad, but there is a systematic bias—over-estimation before 1997 and under-estimation 

thereafter.  The goodness of fit of the annual number of USPTO patent applications of Mainland 

China is just as poor as its annual number of USPTO patent grants in Chart 11-1.  There is 

significant over-estimation before 2001 and significant under-estimation since.  We believe 
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this is also due to the very abrupt and rapid rise in the number of USPTO patent applications 

from Mainland China beginning in the late 1990s as well as the absence of an economy-specific 

time trend term in equation (11-4). 

 

Chart 11-2: The Actual and Fitted Values of the Annual Number 

of USPTO Patent Applications, Mainland China and the U.S. 

 

Source: Data on actual values of annual numbers of USPTO patent grants are from Table5A-1 and the fitted values 

are based on authors’ calculations. 

 

Actually, the annual number of USPTO patent grants awarded to the ith economy is 

indirectly a function of the quantity of real R&D capital stock, lagged one year.  It is, according 

to equation (10-39), given by: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 = (𝐴𝐺𝑈𝑆𝑖
∗ + 𝛼𝐺𝑈𝑆𝐴𝐴𝐴𝑈𝑆𝑖

∗ ) + 𝑐𝐺𝑈𝑆
∗ t +  𝛿  ln𝑔𝑡 + 𝛼𝐺𝑈𝑆𝐴𝛼𝐾 ln 𝐾𝑖(𝑡−1). (11-7) 

In Chart 11-3, the natural logarithm of the annual number of USPTO patent grants is plotted 

against the natural logarithm of the quantity of real R&D capital stock, lagged one year.  Chart 

11-3 provides prima facie evidence that there exists a stable, positive relationship between the 

annual number of USPTO patent grants of the ith economy and its lagged quantity of real R&D 

capital stock, across economies and over time.  However, the relationship appears stronger and 

more similar for the developed economies than for Mainland China and South Korea. 
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Chart 11-3: The Natural Logarithm of the Annual Number of USPTO Patent Grants versus 

the Natural Logarithm of the Quantity of Real R&D Capital Stock, Lagged One Year 

 

Source: Authors’ calculations.  Data on the annual numbers of USPTO patent grants are from Table A5-2 and 

data on the quantities of R&D capital stocks are from Table A3-2. 

 

Differentiating equation (11-7) partially with respect to ln 𝐾𝑖(𝑡−1) , we obtain the 

elasticity of the annual number of USPTO patent grants with respect to the quantity of real 

R&D capital stock of the previous year of the ith economy, holding the year t and the USPTO 

total patent grant rate constant: 

𝜕 ln𝑌𝐺𝑈𝑆𝑖𝑡

𝜕 ln𝐾𝑖(𝑡−1)
 =   𝛼𝐺𝑈𝑆𝐴𝛼𝐾 =  0.402 × 1.132 = 0.455. (11-8) 

Once again, all six economies also have the same estimated elasticity.  Differentiating equation 

(11-7) partially with respect to t, we obtain the rate of growth of the annual number of USPTO 

patent grants of the ith economy, holding the quantity of its lagged real R&D capital stock and 

the USPTO total grant rate constant: 

𝜕 ln𝑌𝐺𝑈𝑆𝑖𝑡

𝜕t
 =  𝑐𝐺𝑈𝑆

∗  = 0.032 or 3.2%.  (11-9) 

 

More specifically, we find that, on average, a ten-percent increase in the quantity of 

real R&D capital stock of the preceding year increases the annual number of USPTO patent 

grants by 4.55 percent, that is, an elasticity of 0.455.  In addition, a ten-percent increase in the 

quantity of real R&D capital stock increases the annual number of USPTO patent applications 
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grants by 11.32 percent, that is, an elasticity slightly greater than one.  Overall, it confirms the 

importance of investment in R&D for the occurrence of innovation. 

  

However, there is a question on the disparity between these two estimated elasticities, 

granted that they actually refer to different things.  One would have expected that the elasticity 

of the annual number of patent grants with respect to the annual number of patent applications 

should be closer to one.  One possible explanation for the relatively low estimated elasticity 

may be due to the fact that in equation (10-37) (and equation (11-1)), only the annual number 

of USPTO patent applications lagged one year is included on the right-hand-side.  In actual 

fact, the number of patent grants in a given year may also depend on the number of patent 

applications submitted more than one year ago.  In order to try to address this issue, we augment 

equation (11-1) as: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 = 𝐴𝐺𝑈𝑆𝑖
∗ + 𝑐𝐺𝑈𝑆

∗  t + 𝛼𝐺𝑈𝑆𝐴 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) + 𝛼𝐺𝑈𝑆𝐴1 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2)+ 𝛿  ln𝑔𝑡,     (11-10) 

adding an independent variable, the number of USPTO patent applications lagged two years.  

Lagging equation (11-10) by one period and subtracting it from equation (11-10), we obtain: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 − ln 𝑌𝐺𝑈𝑆𝑖(𝑡−1) = 𝑐𝐺𝑈𝑆
∗   + 𝛼𝐺𝑈𝑆𝐴(ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) − ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2)) 

      + 𝛼𝐺𝑈𝑆𝐴1(ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2) − ln𝑌𝐴𝑈𝑆𝑖(𝑡−3))+ 𝛿  (ln𝑔𝑡 − ln𝑔(𝑡−1)),  (11-11) 

which is then estimated.  Plugging these estimated parameters into equation (11-10), and 

moving everything except the economy-specific constant terms to the left-hand-side, we can 

obtain new estimates of the 𝐴𝐺𝑈𝑆𝑖
∗ ’s. The estimated results are presented in Table 11-1. 
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Table 11-1: The Estimated Parameters of Equation (11-11) 

 

 

Substituting the estimated parameters in Table 11-1 into equation (11-10), we obtain: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 = 𝐴𝐺𝑈𝑆𝑖
∗ 32 + 0.016. t + 0.296 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) + 0.516 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2)+ 1.252 ln𝑔𝑡. 

                                   (0.008)33    (0.082)                        (0.081)                       (0.135) 

 (11-12) 

Using equation (11-12), we construct a Chart 11-4, presenting both the actual and fitted values 

of the annual numbers of USPTO patent grants for both Mainland China and the U.S.  A 

comparison of Chart 11-1 and Chart 11-4 shows a much-improved fit of the annual number of 

USPTO patent grants for Mainland China34 and the same excellent fits for the U.S. 

 

 

 

 

 

 

 

 

 

                                                 
32 The estimates of the 𝐴𝐺𝑈𝑆𝑖

∗ ’s of specific economies are taken from Table 11-1. 
33 Numbers in parentheses are estimated standard errors. 
34 Even though there is over-estimation before 1998 and under-estimation after 2008. 

  Parameter Estimate Standard Error t-statistic P-value

0.016 0.008 1.879 [.060]

0.296 0.082 3.635 [.000]

0.516 0.081 6.337 [.000]

1.252 0.135 9.260 [.000]

      France -4.558 0.041 -111.180 [.000]

      Germany -4.391 0.041 -107.112 [.000]

      Japan -4.223 0.041 -103.012 [.000]

      United States -4.098 0.047 -87.680 [.000]

      Mainland, China -5.227 0.051 -103.103 [.000]

      South Korea -4.984 0.045 -110.556 [.000]

     
∗ 's

    
∗
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Chart 11-4: The Actual and Fitted Values of the Annual Numbers of USPTO Patent Grants, 

Mainland China and the U.S. with Estimated Parameters from Table 11-1 

 

 

Combining equations (11-10) and (11-4), we obtain: 

ln 𝑌𝐺𝑈𝑆𝑖𝑡 = 𝐴𝐺𝑈𝑆𝑖
∗ + 𝑐𝐺𝑈𝑆

∗  t + 𝛼𝐺𝑈𝑆𝐴 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−1) + 𝛼𝐺𝑈𝑆𝐴1 ln 𝑌𝐴𝑈𝑆𝑖(𝑡−2)+ 𝛿  ln𝑔𝑡,  

         = 𝐴𝐺𝑈𝑆𝑖
∗ + 𝑐𝐺𝑈𝑆

∗ t + 𝛼𝐺𝑈𝑆𝐴(𝐴𝐴𝑈𝑆𝑖
∗ + 1.132 ln𝐾𝑖(𝑡−1)) + 𝛼𝐺𝑈𝑆𝐴1(𝐴𝐴𝑈𝑆𝑖

∗ + 1.132 ln𝐾𝑖(𝑡−2)) 

+ 𝛿  ln𝑔𝑡 

         = (𝐴𝐺𝑈𝑆𝑖
∗ 35 + (𝛼𝐺𝑈𝑆𝐴 + 𝛼𝐺𝑈𝑆𝐴1)𝐴𝐴𝑈𝑆𝑖

∗ 36) + 0.016. t 
                                                                  (0.008)37 

+ 1.132 × (0.296 ln𝐾𝑖(𝑡−1) + 0.516 ln𝐾𝑖(𝑡−2)) + 1.252  ln𝑔𝑡. 
   (0.087)    (0.082)                  (0.081)                    (0.135)  (11-13) 

 

 

 

 

 

                                                 
35 The estimates of the 𝐴𝐺𝑈𝑆𝑖

∗ ’s of specific economies are taken from Table 11-1. 
36 The estimates of the 𝐴𝑈𝑆𝑖

∗ ’s of specific economies are taken from Table 10-2. 
37 Numbers in parentheses are estimated standard errors. 
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In steady state, 𝐾𝑖(𝑡−1) = 𝐾𝑖(𝑡−2) = 𝐾𝑖, so that the partial derivative of ln 𝑌𝐺𝑈𝑆𝑖𝑡 with respect to 

𝐾𝑖, that is, the elasticity of the annual number of USPTO patent grants with respect to the real 

R&D capital stock, is given by ( 𝛼𝐺𝑈𝑆𝐴 + 𝛼𝐺𝑈𝑆𝐴1) × 1.132 = ( 0.296 + 0.516) ×

1.132 =0.919. slightly less than one.38  Differentiating equation (11-13) with respect to t, we 

obtain: 

𝜕 ln𝑌𝐺𝑈𝑆𝑖𝑡

𝜕t
 =  𝑐𝐺𝑈𝑆

∗  = 0.016 or 1.6%.  (11-14) 

This is the autonomous rate of growth of the number of USPTO patent grants, holding all other 

variables constant.  However, we believe this reflects the residual effects of patent applications 

submitted more than two years ago. 

 

The Economies of Scale of R&D 

 

R&D is an activity that is believed to exhibit inherent economies of scale.  Doubling 

the R&D resources is believed to more than double the probability of a discovery or invention, 

since it is then possible to pursue the same objective from two or more different directions.  

However, it may also create competition for the scarce R&D resources, such as R&D 

manpower and critical equipment, which may in some cases lower the probability of a 

discovery or invention.  We estimate below the degree of local returns to scale in real R&D 

capital stock among the economies in our study.  Given a production function Y = F(X), where 

Y is the quantity of output and X is a vector of quantities of inputs, the existence of economies 

of scale implies that F(λX) > λF(X), for any positive scalar λ, λ>1, that is, any expansion of the 

quantities of inputs will result in a more than proportionate increase in the quantity of output.  

The degree  of local returns to scale at X is given by 
𝜕lnF(λX)

𝜕ln𝜆
 𝜆=1.    If X is a scalar variable, 

then 
𝜕lnF(λX)

𝜕ln𝜆
 𝜆=1  = 

𝜕lnF(λX)

𝜕lnX
 𝜆=1 = 

𝑑lnF(X)

𝑑lnX
. 

 

Thus, the degree of local returns to scale in the production of USPTO patent 

applications from real R&D capital stock is given by the elasticity in equation (11-5), 1.132, 

indicating a slightly increasing returns to scale.  The degree of local returns to scale in the 

production of USPTO patent grants from real R&D capital stock from equation (11-8), is given 

by the elasticity, 0.455.  Taken by itself, there appear to be significantly decreasing returns to 

                                                 
38 We believe this number would be even closer to one if we had included a third lagged number of USPTO 

patent applications in equation (11-10). 
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scale.  However, using the estimation results of in Table 11-1, the annual number of USPTO 

patent grants is indirectly a function of the quantities of the real R&D capital stocks, lagged 

one and two years respectively, as in equation (11-13).  In steady state, the elasticity of the 

annual number of USPTO patent grants with respect to the quantity of real R&D capital stock 

is estimated to be 0.919, indicating slightly decreasing returns to scale.  There does not appear 

to be any evidence of significant increasing returns to scale to investment in R&D. 
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Chapter 12: Complementary Inputs to R&D Capital 

In addition to real R&D capital, complementary inputs, such as R&D researchers, are 

needed to produce innovation.  Complementary inputs are also needed, in addition to real R&D 

capital, in order to produce real GDP in an economy.  What are some complementary inputs to 

real R&D capital?  At the microeconomic level, there are, of course, the R&D researchers and 

the physical R&D infrastructure, such as structures and equipment.  However, we should note 

that R&D expenditure per se already includes the total cost of the human resources employed 

in the R&D activities as well as the investment in R&D-related structures and equipment.  Thus, 

only the current-period R&D manpower input should be considered a complementary input in 

R&D activities to avoid double-counting. 

 

At the macroeconomic level, within an aggregate production function framework, there 

are of course the conventional inputs of production: tangible capital, labour, and human capital.  

Human capital, in particular, should be complementary to R&D capital, since R&D activities 

must be carried out and its results applied and implemented by educated (including some highly 

educated), experienced, and skilled workers.  In Chart 12-1, the quantity of human capital of 

each economy in our study, measured as the total number of person-years of schooling 

(including tertiary education) among the working-age population, defined as those aged 

between 15 and 64, are presented.  However, as comparable data on the mean years of 

schooling of the working-age population are not readily available across economies, instead, 

we use the mean years of schooling achieved by people aged 25 and above and multiply it to 

the total working-age population.  This is likely to result in a downward bias in our estimates 

of the total quantity of human capital, especially for economies with a rapidly expanding 

educational system at the primary and secondary levels.39  Chart 12-1 shows that Mainland 

China has the highest total quantity of human capital, primarily on the basis of its large 

population, followed by the U.S. and Japan. 

  

                                                 
39 Typically, the number of years of schooling changes very little over time for an individual aged 25 and above. 
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Chart 12-1: The Quantity of Human Capital (Total Person-Years of Education), 

G-7 Countries, Mainland China, and 4 EANIEs 

 

Source: Data are collected from Human Development Reports, United Nations Development Programme, and the 

Directorate General of Budget, Accounting and Statistics, Taiwan, China. 

 

In Chart 12-2, we compare the quantities of human capital across the economies in our 

study on a per capita basis.  Chart 12-2 shows that the U.S. was the leader in terms of human 

capital per capita until 2003, when it was overtaken by Germany.  As of 2019, Germany 

remained the leader, followed by Canada, South Korea and Taiwan, China.  The U.S. fell to 

fifth place.  Mainland China is in the last place among our economies.  Despite significant 

increases in the total number of person-years of education for Mainland China in recent decades, 

the quantity of Chinese human capital in per capita terms is still relatively low, especially 

because our measurement includes only the school-years of those aged 25 and above and hence 

cannot reflect the huge expansion of the tertiary education sector in Mainland China in the past 

decade or so.  It will take another couple of decades before the quantity of Mainland Chinese 

human capital per capita can catch up to the level of the G-7 economies. 

  

1

10

100

1,000

10,000

1
9

9
0

1
9

9
1

1
9
9
2

1
9
9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9
9
7

1
9
9
8

1
9

9
9

2
0

0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0

0
4

2
0

0
5

2
0
0
6

2
0
0
7

2
0

0
8

2
0

0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0

1
3

2
0

1
4

2
0
1
5

2
0
1
6

2
0

1
7

2
0

1
8

2
0

1
9

T
h

e
 Q

u
a

n
ti

ty
 o

f 
H

u
m

a
n

 
C

a
p

it
a

l 
S

to
ck

, 
m

il
li

o
n

 
p

e
rs

o
n
-y

e
a

rs
 

 Canada France Germany  Italy

Japan U.K. U.S. Mainland, China

Hong Kong, China South Korea Singapore Taiwan, China



66 
 

Chart 12-2: The Quantity of Human Capital per Capita, 

G-7 Countries, Mainland China, and 4 EANIEs (person-years per person) 

 

Source: Same as Chart 12-1. 

 

In Chart 12-3, we plot a scatter diagram between the total quantity of human capital, 

measured in terms of person-years of education, and the quantity of real R&D capital stock in 

the same year.  Chart 12-3 shows a very diverse scatter.  The ratio of human capital to real 

R&D capital varies greatly across economies and over time.  If they were constant across 

economies, the scatter points should all lie on the same straight line.  However, Chart 12-3 

clearly shows that, overall, the quantities of human capital and real R&D capital are positively 

correlated—the more real R&D capital, the more human capital, and vice versa.  The G-7 

economies as a group do appear to have similar elasticities of human capital with respect to 

R&D capital.  Among the East Asian economies other than Japan, there is a wide spread, with 

Mainland China having the highest ratio of human capital to R&D capital and Singapore the 

lowest.  The goodness of fit of the simple linear regression of the natural logarithm of the 

quantity of human capital on the natural logarithm of the quantity of real R&D capital is 

relatively poor (the black line), reflecting the significant diversity among the economies, but 

the linear regression with economy-specific constants has a much better fit (the red line).40  The 

elasticity of human capital with respect to R&D capital does not seem to vary significantly 

                                                 
40 The red line in Chart 12-3 is drawn with a constant term set equal to the weighted average of all the economy-

specific constants with the shares of the number of observations of each economy in the total number of 

observations as weights. 
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across economies, and a ten-percent increase in the real R&D capital of an economy is 

associated with an approximately three-percent increase in its human capital. 

 

Chart 12-3: A Scatter Diagram between the Quantity of Human Capital 

and the Quantity of Real R&D Capital Stock, G-7 Countries, Mainland China, and 4 EANIEs 

 

Source: Data are collected from Human Development Reports, United Nations Development Programme, and the 

Directorate General of Budget, Accounting and Statistics, Taiwan, China.  The quantities of R&D capital stocks 

are from Table A3-2. 

 

At a more microeconomic level, the number of R&D researchers in an economy is 

important, because these are the actual people who have to carry out the R&D activities.  

However, R&D researchers per se constitute only a small proportion of the scientists and 

engineers in an economy.  In Chart 12-4, the total number of R&D researchers, including 

researchers in (1) natural sciences and engineering,41 (2) social science, humanities, and the 

arts, and (3) not elsewhere classified, are presented and compared across economies.42  The 

number of R&D researchers does not include other R&D personnel such as technicians and 

other support staff. Traditionally, the U.S. had the highest number of R&D researchers.  

However, Mainland, China has been catching up very fast and has overtaken the U.S. in 2010. 

 

 

                                                 
41 Data for ONLY the number of scientists and engineers are not readily available. 
42 Data for Hong Kong, China are not readily available. 
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Chart 12-4: The Number of R&D Researchers, G-7 Countries, Mainland China, and 3 EANIEs 

 

Source: The number of R&D researchers are collected from Main Science and Technology Indicators, OECD. 

 

In Chart 12-5, we compare the number of R&D researchers of the economies in our 

study on a per capita basis.  Chart 12-5 shows that despite significant increases in the total 

number of R&D researchers in Mainland China, the number of Mainland Chinese R&D 

researchers is still low in per capita terms.  In fact, it is the lowest in our sample of economies, 

due, in part, to its large population.  It will probably take decades before the number of Chinese 

R&D researchers per capita can catch up to the level of the G-7 economies. 
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Chart 12-5: The Number of R&D Researchers per Capita, 

G-7 Countries, Mainland China, and 3 EANIEs 

 

Source: Authors’ calculations.  The number of R&D researchers are collected from Main Science and Technology 

Indicators, OECD. The population data are from International Financial Statistics (Canada, France, Germany, 

Italy, Japan, South Korea, Singapore and U.K.), World Development Indicators (U.S.), and the local statistical 

agencies (Mainland China, Hong Kong, China and Taiwan, China). 

 

In Chart 12-6, we plot a scatter diagram between the total number of R&D researchers 

and the quantity of real R&D capital stock in the same year.  Chart 12-6 shows that overall, the 

number of R&D researchers and the quantity of real R&D capital stock are positively correlated.  

Moreover, the correlation appears to be tighter than that between human capital and real R&D 

capital in Chart 12-3, which is what should be expected.  The elasticity of the number of R&D 

researchers with respect to the quantity of real R&D capital is approximately greater than 0.7, 

that is, a ten-percent increase in real R&D capital is likely to result in a more-than-seven-

percent increase in the number of R&D researchers.  However, Mainland China appears to 

have a lower real R&D capital to R&D researcher ratio than all the other economies.  This may 

perhaps be due in part to the lower cost of R&D labour relative to real R&D capital in Mainland 

China. 
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Chart 12-6: A Scatter Diagram between the Number of R&D Researchers 

and the Quantity of Real R&D Capital Stock, G-7 Countries, Mainland China, and 3 EANIEs 

 

Sources: The number of R&D researchers are collected from Main Science and Technology Indicators, OECD.  

The quantities of R&D capital stocks are from Table A3-2. 

 

An important determinant of whether innovation can enhance the actual rate of 

technical progress of an economy is its total number of scientists and engineers, because these 

are the people who have to implement the discoveries and inventions in actual manufacturing 

and other productive activities downstream from R&D.  In fact, the proportion of scientists and 

engineers directly engaged in R&D activities is probably a small percentage of the total.  In 

Chart 12-7, the total numbers of scientists and engineers of selected economies in our sample 

are compared.43  Chart 12-7 shows that the U.S. has by far the highest number of scientists and 

engineers, followed by Mainland China and Germany.44 

  

                                                 
43 Unfortunately, it is not possible to compare the number of scientists and engineers across all the economies in 

our sample because the data are not readily available for some of them. 
44 The definition of “scientists and engineers” in Chinese statistics may not be exactly the same as that used by 

the International Labour Organization.  However, we believe they are broadly comparable. 
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Chart 12-7: The Number of Scientists and Engineers, Selected Economies 

 

Sources: Labour Statistics (ISCO level 2), International Labour Organization; Chinese Labour Statistical 

Yearbook. 

 

In Chart 12-8, we compare the number of scientists and engineers of selected economies 

in our sample on a per capita basis.  Chart 12-8 shows that Germany has the highest number of 

scientists and engineers per capita, followed by France.  We believe that the U.S. has a 

relatively low number of scientists and engineers per capita among the developed economies 

mainly because of its relatively smaller manufacturing sector.  The number of Mainland 

Chinese scientists and engineers in per capita terms is still low despite significant increases in 

its total number of scientists and engineers in the recent decade.  It will take decades before the 

number of Chinese scientists and engineers per capita can catch up to the levels of the 

developed economies. 
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Chart 12-8: The Number of Scientists and Engineers per Capita, Selected Economies 

 

Sources: Same as Chart 12-7. 
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Chapter 13: Other Indicators of Innovation Success 

In Chapters 3, 4, 5, 6 and 7, we have examined two major indicators of the innovation 

output of an economy at the macroeconomic level—the total numbers of patent applications to 

and patent grants from domestic and foreign patent offices—and shown that they depend 

positively and monotonically on the quantities of real R&D capital stock, defined as the 

cumulative total real R&D expenditures less the depreciation of an assumed ten percent per 

year.  In Chapter 8, we have also developed several other indicators of relative success in 

innovation, again at the macroeconomic level. 

 

There are of course other possible indicators of innovation output at the economy-wide 

level, for example, the total number of articles published in professional and scientific journals, 

the number of frequently cited published journal articles, the frequency of major scientific 

awards such as the Nobel Prize, and the annual value of income from licence fees and royalties.  

It is not possible to undertake an exhaustive examination of all of these alternative indicators 

of innovation output, but some of them will be briefly discussed in turn below. 

 

The Number of Published Articles in Professional Journals 

 

When a new and original discovery or invention is made, it is likely that the first public 

disclosure is through a research paper authored by the discoverer(s) or inventor(s).  The 

research paper, after being peer-reviewed and confirmed to be valid, is then published as an 

article in a professional journal.  Thus, the publication of such an article should also be 

considered as an output of R&D activities and an indicator of innovation success.  In Chart 13-

1, the time-series of the number of scientific and engineering articles published in professional 

journals by authors who are residents of a given economy included in our study between 2000 

and 2018 are presented.45 46  These articles include those published in the following fields: 

physics, biology, chemistry, mathematics, clinical medicine, biomedical research, engineering 

and technology, and earth and space sciences.  The journals are limited to those that are 

                                                 
45 The numbers of scientific and engineering articles for G-7 countries, Mainland China, Singapore, and South 

Korea are taken from the World Development Indicators (WDI) database of the World Bank.  Data for Taiwan, 

China are collected from Science & Engineering Indicators, U.S. National Science Foundation.  Data on Hong 

Kong, China are not readily available. 
46 Counts are based on fractional assignments; articles with authors from different economies are allocated 

proportionately to each economy. 
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abstracted in the Institute for Scientific Information's Science Citation Index (SCI) and Social 

Sciences Citation Index (SSCI). 

 

Chart 13-1 shows that in 2000, the United States was far and away the leader in the 

annual number of published scientific and engineering articles, with more than 300,000.  In 

contrast, China had only 53,000 articles.  Japan, the U.K., and Germany were in the second, 

third and fourth places, respectively.  However, the number of articles authored by Mainland 

Chinese residents began to increase rapidly, and China overtook first Japan in 2004 and then 

the U.S. in 2016 to take the lead in the total number of published scientific and engineering 

articles.  In 2018, Chinese authors published 530,000 articles compared to the 420,000 of the 

U.S. authors, with Germany in a distant third place with 104,000 articles.  Japan used to be the 

second most prolific publisher of scientific and engineering articles until it was overtaken by 

China in 2004 and Germany in 2014.  In last place in 2018 was Singapore.47  Over the period 

2000-2018, the number of scientific and engineering articles grew in every economy in our 

study at rates ranging from 0.1% per annum for Japan to 12.8% per annum for Mainland China, 

with an average of 4.0%.  The number of articles from the U.S. grew at 1.8% per annum.  For 

the world as a whole, the number of articles grew at 4.8% per annum.  The rapid growth of the 

number of articles from Mainland China inevitably crowded out potential articles from the rest 

of the world.  In fact, between 2014 and 2018, the numbers of articles from Canada, France, 

Germany, Japan, the U.K., the U.S. and Taiwan, China all declined. 

  

                                                 
47 Comparable figures on the number of articles published by residents of Hong Kong, China are not readily 

available. 
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Chart 13-1: The Number of Scientific and Engineering Articles in Professional Journals, 

G-7 Countries, Mainland China, and 3 EANIEs 

 

Sources: World Development Indicators and Science & Engineering Indicators, U.S. National Science Foundation. 

 

In Chart 13-2, the numbers of scientific and engineering articles in professional journals 

published by authors resident in a given economy per thousand persons each year are compared 

across the economies in our study.  Surprisingly, Singapore is the leader among the economies 

included in our study, followed by Canada and the U.K.  The U.S. falls into the middle of the 

group.  Equally surprisingly, Japan is in the next to the last place.  Mainland China, with only 

one third of the number of articles per capita as the U.S., is in the last place in part because of 

its large population. 
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Chart 13-2: The Number of Scientific and Engineering Articles in Professional Journals 

per Thousand Persons, G-7 Countries, Mainland China, and 3 EANIEs 

 

Sources: The numbers of scientific and engineering articles are from World Development Indicators and Science 

& Engineering Indicators, U.S. National Science Foundation.  The population data are from International 

Financial Statistics (Canada, France, Germany, Italy, Japan, South Korea, Singapore and U.K.), World 

Development Indicators (U.S.) and the local statistical agencies (Mainland China, Hong Kong, China and Taiwan, 

China). 

 

In Chart 13-3, the number of scientific and engineering articles in professional journals 

published by authors resident in a given economy each year is plotted against the quantity of 

its real R&D capital stock.  Not surprisingly, the number of articles also bears a positive 

relationship to the quantity of real R&D capital stock.  The higher the quantity of real R&D 

capital stock, the higher is the number of scientific and engineering articles published in 

professional journals.  However, as pointed out above, since the mid-2010s, the numbers of 

published articles have been declining for Canada, France, Germany, Japan, the U.K., the U.S., 

and Taiwan, China, even as the total for the world has continued to increase.  This may be 

explained in part by the large increases in the number of article submissions and publications 

by authors from Mainland China, which have in effect crowded out those authors from other 

economies.  This is evidenced by the dips at the ends of the economy-specific number of 

articles-quantity of real capital stock lines.  Nevertheless, the overall positive relationship 

between the number of published articles and the quantity of real R&D capital stock is 

unmistakeable.  The linear regression yields a statistically highly significant coefficient of 
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0.711, which can be interpreted as the elasticity of the annual number of articles with respect 

to the quantity of real R&D capital.  We believe the relatively low estimate of the elasticity 

may have been caused by the decline in the number of articles in most of the economies 

beginning in the mid-2010s.  China does appear to be an over-achiever in Chart 13-3.48 

 

Chart 13-3: A Scatter Diagram between the Numbers of Scientific and Engineering Articles and 

the Quantities of Real R&D Capital Stock, G-7 Countries, Mainland China, and 3 EANIEs 

 

Sources: World Development Indicators; Science & Engineering Indicators, U.S. National Science Foundation; 

and Table A3-1. 

 

The Number of Frequently Cited Articles 

 

However, not all published articles are of equal quality or importance.  The highest-

quality articles are often the most frequently cited.  In Chart 13-4, we present time-series data 

on the number of “top 1-percent most cited science and engineering articles” published by the 

residents of each economy in our study.  The U.S. has been and continues to be the leader in 

the number of “top 1-percent most cited science and engineering articles”.  However, China 

has made great progress since 2000, overtaking Italy in 2003, France in 2004, Japan and Canada 

                                                 
48 In some Chinese universities, there is a publication requirement for the completion of master and Ph. D. 

degrees.  Having high quality publications which are cited in SSCI and SCI is also a requirement for obtaining 

tenured academic positions in most Chinese universities and research institutes.  This may explain, in part, the 

surge in the number of Chinese published articles. 
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in 2005, Germany in 2008 and the U.K. in 2010, to reach the second place with just below 

5,000 articles, compared to the just above 8,000 for the U.S.  It is of interest to note that with 

the exception of China, the numbers of frequently cited articles of the other East Asian 

economies, including Japan, are relatively low. 

 

Chart 13-4: The Number of Top 1% Most Cited S&E Articles in the Scopus Database, 

G-7 Countries, Mainland China, and 3 EANIEs 

 

Source: Authors’ Calculations.  Data are collected from Table S5a-2 and Table S5a-35, Science & Engineering 

Indicators, U.S. National Science Foundation. 

 

In Chart 13-5, the number of top 1% most cited Science and Engineering articles 

published in professional journals written by authors resident in each economy each year is 

plotted against the quantity of its real R&D capital stock.  Once again, the number of top 1% 

most cited S&E articles also has a positive relationship to the quantity of real R&D capital 

stock.  The higher the quantity of real R&D capital stock, the higher is the number of top 1% 

most cited S&E articles.  Two separate linear regression lines, one with economy-specific 

constant terms (the red line)49 and one without (the black line), are plotted in Chart 13-5.  They 

both show a significant positive relationship between the number of top 1% most cited articles 

                                                 
49 The red line in Chart 13-5 is drawn with a constant term set equal to the weighted average of all the economy-

specific constants with the shares of the number of observations of each economy in the total number of 

observations as weights. 
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and the quantity of real R&D capital stock.  However, the linear regression with economy-

specific constants (the red line) has a much better overall fit (Adjusted 𝑅2 of 0.9994) and an 

estimated elasticity of the number of most cited articles with respect to the real R&D capital 

stock of 1.41, indicating substantial economies of scale once economy-specific factors are 

controlled. 

 

Chart 13-5: A Scatter Diagram between the Number of Top 1% Most-Cited S&E Articles 

and the Quantity of Real R&D Capital Stock, G-7 Countries, Mainland China, and 3 EANIEs 

 

Sources: Data on the number of top 1% most cited S&E articles are the same as Chart 13-4.  Data on the quantity 

of R&D capital stock are from Table A3-2. 

 

The Number of Nobel Prizes in Chemistry, Physics, and Physiology or Medicine 

 

Major scientific awards given for important original discoveries and inventions are also 

good indicators of innovation output.  There are many such awards.  We choose to look at the 

Nobel Prizes in the physical and life sciences, that is, the Nobel Prizes in Chemistry, Physics, 

and Physiology or Medicine.  In Chart 13-6, the cumulative total number of Nobel Prizes 

received by the nationals of the G-7 countries and China (Mainland only) are presented.  (There 

has been no Nobel Prize in the physical and life sciences awarded to the residents of the 4 

EANIEs.) 

10

100

1,000

10,000

10 100 1,000 10,000

T
h

e 
N

u
m

b
er

 o
f 

T
o
p

 1
%

 M
o
st

 C
it

ed
 S

&
E

 A
rt

ic
le

s 

The Quantity of R&D Capital Stock (billion 2019 US$)

Canada
France
Germany
Italy
Japan
U.K.
U.S.
Mainland, China
South Korea
Singapore
Taiwan, China
Linear Regression Line
Regression with Economy-Specific Constants

Adj. R2=0.7538

 ln 2.360 0.752*ln &

         (0.162) (0.030) 

y R D 

Regression with Economy-Specific 

Constants

Adj. R2=0.9994



80 
 

Chart 13-6 shows that as of 2020, the United States has the highest cumulative number 

of Nobel Laureates, 130.4, in the physical and life sciences.50  In fact, it has had a commanding 

lead since 1961.  It is followed by the U.K., with 49.1 Laureates, and Germany, with 45.6 

laureates.  China has only 1.5 Laureates.  The gap between the U.S. and the other G-7 countries 

plus China is large.  In fact, the cumulative number of U.S. Nobel Laureates is just shy of the 

combined total of the other G-7 countries and China, 135. 

 

Chart 13-6: The Cumulative Number of Nobel Prizes in Chemistry, Physics 

and Physiology or Medicine, G-7 Countries and China 

 

Source: Derived from Nobel Prize website. 

 

In Chart 13-7, the cumulative total number of Nobel Prizes in the physical and life 

sciences received by the nationals of the G-7 countries and China each year is plotted against 

the quantity of its real R&D capital stock.  The relationship is also positive: the higher the 

quantity of real R&D capital stock of an economy, the higher is its cumulative number of Nobel 

Laureates.  The linear regression line is also statistically significant.  However, there appears 

to be a large gap between the “over-achievers” of the U.S., the U.K., Germany, and France on 

the one hand and the “under-achievers” of Canada, Italy, Japan and China on the other. 

 

                                                 
50 The number of prizes are fractional because each Nobel Prize can be shared by as many as three laureates 

each year. 
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Chart 13-7: A Scatter Diagram between the Cumulative Number of Nobel Prizes in 

Physical Sciences and the Quantity of Real R&D Capital Stock, G-7 Countries and China 

 

Source: Chart 13-6 and Table A3-1. 

 

Alternatively, we can also draw a scatter diagram between the cumulative number of 

Nobel Prizes and the quantity of real basic research capital stock each year.  This is presented 

in Chart 13-8 below.  (Unfortunately, data on basic research expenditures are not readily 

available for Canada and Germany.)  The relationship is also positive: the higher the quantity 

of real basic research capital stock of an economy, the higher is its cumulative number of Nobel 

Laureates.  In fact, the goodness of fit of the linear regression of the number of Laureates on 

the quantity of real basic research capital stock (Adjusted 𝑅2=0.5341) is better than the one on 

the quantity of real R&D capital stock (Adjusted 𝑅2=0.4468), which shows that basic research 

is probably a more important determinant of break-through scientific discoveries. 
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Chart 13-8: A Scatter Diagram between the Cumulative Number of Nobel Prizes in Physical 

Sciences and the Quantity of Real Basic R&D Capital Stock, G-7 Countries and China 

 

Sources: Chart 13-6 and Table A3-4. 

 

On the basis of this cursory examination of other indicators of innovation success, we 

can conclude that they are all positively and monotonically related to the quantity of real R&D 

capital stock.  The connection between innovation and R&D is always present, no matter how 

innovation is measured. 

 

Finally, while in principle, the value of licence fees and royalties received is also a good 

indicator of innovation success, it is in practice quite difficult to collect such data in a 

comprehensive way.  In addition to domestic revenue from licence fees and royalties, there can 

also be significant foreign revenue from license fees and royalties.  However, these fees and 

royalties are sometimes booked to tax havens for tax avoidance reasons.  Furthermore, 

whatever data available are often not disaggregated to the level of the individual economies by 

either origin or destination.  It will have to await a further study in itself. 
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Chapter 14: Conclusions and Directions for Further Research 

Are There Laws of Innovation?  Our investigations, as reported in Chapters 1 through 

13 above, allow us to answer unequivocally: Yes, there are “Laws of Innovation”!  This is 

certainly true at the economy-wide level.  Innovation is found not to be accidental or fortuitous.  

It is also not manna from heaven.  It is basically the outcome of research and development 

(R&D) activities conducted in an economy over a long period of time.  The more an economy 

invests in R&D, the more innovation success it will be able to generate over time, and the more 

sustainable its economic growth will become. 

 

We have established that the numbers of patent applications and grants are useful 

measures of innovation output.  We have also established that the quantity of real R&D capital 

stock is a useful measure of innovation input.  Moreover, a positive and monotonic relationship 

between innovation output and innovation input has also been consistently and repeatedly 

identified and confirmed with empirical data.  Specifically, the positive relationship between 

the number of patent applications submitted by and patent grants awarded to the residents of 

an economy and the quantity of its real R&D capital stock has been empirically established for 

different economies and different patent granting agencies (including the United States Patent 

and Trademark Office (USPTO), European Patent Office (EPO) and China National 

Intellectual Property Administration (CNIPA)), and at both the macroeconomic and 

microeconomic levels. 

 

Our investigations also show that the number of patent grants by a foreign patent 

authority (for example, USPTO, EPO and CNIPA), as opposed to the number of domestic 

patent grants, is a more reliable indicator of the relative success in innovation across economies.  

However, on balance, it also appears that the number of USPTO patent grants is probably a 

more reliable indicator to use because its economy-specific grant rates appear to be quite 

consistent and uniform across different economies and exhibit no obvious biases. 

 

Through our econometric analysis of USPTO patent applications and grants in Chapters 

10 and 11 for the six economies with more domestic patent applications than USPTO patent 

applications,51 consisting of Mainland China, France, Germany, Japan, South Korea and the 

                                                 
51 It is reasonable to assume that if a discovery or invention is good enough for a USPTO patent application, it 

should be good enough, in terms of quality, for a domestic patent application.  Moreover, the cost of application, 

and subsequent maintenance if granted, of a USPTO patent is, in general, much more expensive than that of a 
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U.S., we have also rigorously established that the positive relationship between the number of 

patent applications and patent grants and the quantity of real R&D capital stock is actually quite 

similar across the different economies.  In fact, one cannot reject the hypothesis that they are 

identical.  Thus, the common “Laws of Innovation” appear to apply across economies.  The 

estimated elasticity of the number of USPTO patent grants awarded to an economy with respect 

to the quantity of its lagged real R&D capital stock is 0.92.52  It means, on average, a 1 percent 

increase in the quantity of the real R&D capital stock of an economy increases its annual 

number of USPTO patent grants by 0.92 percent, indicating the existence of some slight 

decreasing returns to scale.53  However, we believe that the R&D enterprise on balance exhibits 

approximately constant returns to scale.  In any case, we should bear in mind that the quantity 

of real R&D capital stock is the cumulative total of a decade of R&D investments and cannot 

be changed significantly either upwards or downwards overnight. 

 

Other indicators of innovation success, such as publications in professional journals and 

frequency of citations, also show a similar relationship with the quantity of real R&D capital 

stock.  In particular, our analysis of the Nobel Prizes in the physical and life sciences identifies 

investment in  basic research as an important determinant of cumulative success in Nobel Prizes 

in the long run. 

 

It would be interesting to extend our econometric model for the analysis of USPTO 

patent applications and grants to include EPO patent applications and grants and CNIPA patent 

application and grants.  Like the USPTO, the EPO and the CNIPA are likely to maintain more 

consistent and uniform standards and procedures in their assessment of the quality of the patent 

applications, at least insofar as foreign applicants are concerned. 

 

Another interesting question is whether there exist cross-economy externalities in R&D.  

What we have in mind is whether a higher quantity of real R&D capital stock in one economy 

can raise the R&D output, for example, patent grants, in another economy.  We believe this is 

not only possible, but quite likely, given the large volume of published professional and 

scholarly articles and educational exchanges.  However, this effect may be difficult to identify 

                                                 
domestic patent.  Thus, when a USPTO patent application is submitted without concurrently submitting a 

domestic patent application, considerations extraneous to the quality of the discovery or invention must have 

been involved.  In this case, the number of patent applications is a biased indicator of innovation success. 
52 See Chapter 11. 
53 An elasticity of one indicates constant returns to scale. 
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and quantify empirically.  Perhaps one can begin with a study of cross-economy collaboration 

in R&D as revealed in publications in professional and scientific journals. 

  

Yet another interesting question is the relative distribution of the stocks of working 

USPTO patents across the economies included in our study.54  A patent grant is typically valid 

for 20 years from the date of application (not the date of the patent grant).  Thus, at any given 

time, the stock of working patents may be approximately estimated by the cumulative total 

number of patent grants over the previous 19 years, on the assumption that it takes, on average, 

one year from the date of application for a patent grant to be approved.  The estimated time-

series of the stocks of working USPTO patents of each economy in our study between 2000 

and 2019 are presented in Chart 14-1.  Chart 14-1 shows that the U.S. has consistently had the 

largest stock of working USPTO patents.  Japan is in second place.  Even though the other East 

Asian economies, including China, have been catching up fast, but it is likely to take a while 

before they reach the same level as the developed economies. 

 

Chart 14-1: The Stock of Working USPTO Patent Grants, 

The G-7 Countries, Mainland China, and 4 EANIEs 

 

Source: Authors’ calculations.  The number of USPTO patent grants are from Table A5-2. 

                                                 
54 It is also possible to look at patents granted by other patent offices.  However, judging from the economy-

specific USPTO patent application success rates, it appears that the USPTO has maintained uniform standards 

for all economies, including the U.S. itself. 
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Our investigations also reveal the rising importance of East Asian economies other than 

Japan, especially Mainland China, in the creation of patents worldwide.  In Chart 14-2, we 

compare the share of total number of USPTO patent grants accounted for by the G-7 countries 

without Japan, and those of China and the EANIEs with Japan.55  We refer to the group of G-

7 countries without Japan as “G-7 Countries ex Japan” and China and the EANIEs with Japan 

as “East Asian economies”.  The share of G-7 Countries ex Japan has fallen from a peak of 

almost 95% in 1963 to just below 60% in 2019, while the share of East Asian economies has 

risen from less than 1% in 1963 to almost 31% in 2019.  It is clear that, over time, the centre 

of gravity of innovation has been gradually shifting from the developed to the developing 

economies, and also from European and North American economies to East Asian economies.  

It is, however, noteworthy that the share of Japan has also been declining since the early 1990s 

and the rate of increase of the share of the four EANIEs seems to have plateaued.  It will 

probably take another couple of decades before the share of East Asian economies in USPTO 

patent grants can rise above 40%, but it will likely do so on the strength of USPTO patent 

applications from Mainland China. 

 

Chart 14-2: The Distribution of USPTO Patent Grants, 

G-7 Countries ex Japan, Japan, Mainland China, and 4 EANIEs 

 

Sources: Table A5-2. 

                                                 
55 Japan may also be considered an East Asian economy, along with China and the 4 EANIEs. 
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For the sake of comparison, we also look at the distribution of CNIPA patent grants 

between the “G-7 Countries ex Japan” and the East Asian economies, consisting of Mainland 

China, Japan and the 4 EANIEs.  In Chart 14-3, we compare the shares of the total number of 

CNIPA patent grants accounted for by these two groups of economies.  Chart 14-3 shows that, 

in 2019, G-7 Countries ex Japan accounted for less than 10% of CNIPA patent grants and East 

Asian economies accounted for almost 90%, with 78% from Mainland China itself.  We believe 

this is due, in part, to the low CNIPA patent application rates from economies outside of 

Mainland China.  As the patent application rates from other economies rise, the share of G-7 

Countries ex Japan should also begin to rise, perhaps ultimately to 30%.  This is not inconsistent 

with the hypothesis that the centre of gravity of innovation will continue to shift from European 

and North American economies to East Asian economies. 

 

Chart 14-3: The Distribution of CNIPA Patent Grants, 

G-7 Countries ex Japan, Japan, Mainland China, and 4 EANIEs 

 

Source: China Statistical Yearbook, various years. 

 

Finally, it remains to be established that the quantity of the working stock of patent 
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estimation of aggregate production functions in addition to the conventional inputs of tangible 

capital, labour and human capital.  While these are all worthwhile research initiatives, they are 

beyond the scope of this study and will have to be taken up in other studies in the future. 
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